
1 OPERATING SYSTEMS LABORATORY

VIII - Memory Management I

1.1 Memory Management

Memory management is the art and the process of coordinating and control-
ling the use of memory in a computer system. Memory management can be
divided into three areas:

1. Memory management hardware (MMUs, RAM, etc.) consists of the
electronic devices and associated circuitry that store the state of a
computer. These devices include RAM, MMUs (memory management
units), caches, disks, and processor registers. The design of memory
hardware is critical to the performance of modern computer systems. In
fact, memory bandwidth is perhaps the main limiting factor on system
performance.

2. Operating system memory management (virtual memory, protection) is
concerned with using the memory management hardware to manage the
resources of the storage hierarchy and allocating them to the various
activities running on a computer. The most significant part of this
on many systems is virtual memory, which creates the illusion that
every process has more memory than is actually available. OS memory
management is also concerned with memory protection and security,
which help to maintain the integrity of the operating system against
accidental damage or deliberate attack. It also protects user programs
from errors in other programs.

3. Application memory management (allocation, deallocation, garbage col-
lection) involves obtaining memory from the operating system, and
managing its use by an application program. Application programs
have dynamically changing storage requirements. The application mem-
ory manager must cope with this while minimizing the total CPU over-
head, interactive pause times, and the total memory used.

• The malloc() function allocates an uninitialized memory block. It
allocates a specified number of bytes of memory, as shown in the fol-
lowing prototype, returning a pointer to the newly allocated memory
or NULL on failure:

void *malloc(size_t size);

1

• The calloc() function allocates and initializes a memory block. The
difference is that calloc() initializes the allocated memory, setting each
bit to 0, returning a pointer to the memory or NULL on failure. It uses
the following prototype:

void *calloc(size_t nmemb, size_t size);

• The realloc() function resizes a previously allocated memory block.
Use realloc() to resize memory previously obtained with a malloc()
or calloc() call. This function uses the following prototype:

void *realloc(void *ptr, size_t size);

– The ptr argument must be a pointer returned by malloc() or
calloc().

– The size argument may be larger or smaller than the size of the
original pointer.

• The free() function frees a block of memory. This function uses the
following prototype:

void free(void *ptr);

– The ptr argument must be a pointer returned from a previous call
to malloc() or calloc().

– It is an error to attempt to access memory that has been freed.

Memory allocation functions obtain memory from a storage pool known
as the heap.

• The alloca() function allocates an uninitialized block of memory. This
function uses the following prototype:

void *alloca(size_t size);

alloca() obtains memory from the process’s stack rather than the heap
and, when the function that invoked alloca() returns, the allocated
memory is automatically freed.

2

1.1.1 Examples&Exercises:

1. Using Dynamic Memory Management Functions; code45.c

• Illustrates the standard library’s memory management functions.

• Lines 15-18 illustrate malloc() usage. It is attempted to allocate
ten bytes of memory, check malloc()’s return value, display the
contents of the uninitialized memory, and then return the memory
to the heap.

• Lines 20-22 repeat this procedure for calloc().

• Rather than freeing d, however, it is attempted to extend it on
lines 26-28. Whether realloc() succeeds or fails, it should still
point to the string ”foobar”.

• The pointer, e, as shown on lines 31-33, is allocated off the stack
and, when main() returns (that is, when the program exits), its
memory is automatically freed.

2. Dangling Pointers;

char *str;

str = malloc(sizeof(char) * 4)

free(str);

strcpy(str, "abc");

• Write a program that containing the code segment above.

• What kind of an error will you obtain? Why?

3. A Problem Child; code46.c.

• C assumes you know what you are doing, most C compilers ignore
uses of uninitialized memory, buffer overruns, and buffer under-
runs.

• Nor do most compilers catch memory leaks or dangling pointers.

• Bugs in the program:

– A memory leak (line 18),

– Overruns the end of dynamically allocated heap memory (lines
22 and 28),

– Underruns a memory buffer (line 32),

– Frees the same buffer twice (lines 36 and37),

3

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code45.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code46.c

– Accesses freed memory (lines 40 and41),

– Clobbers statically allocated stack and global memory (lines
48 and 44, respectively)

• These bugs can prevent the program from executing depending on
the configuration (to allow core dumps), but leaks and clobbered
memory usually show up as unpredictable behavior elsewhere in
the program.

• Fix the errors (if occurs).

1.2 Memory Arrangement

Figure 1: Typical Memory Arrangement

1. Text segment: This is the machine instructions that are executed by
the CPU. Usually the segment is sharable so that only a single copy
needs to be in memory for frequently executed programs. Also, the
text segment is often read-only, to prevent a program from accidentally
modifying its instructions.

• Initialized data segment: This is usually just called the data
segment and it contains variables that are specifically initialized
in the program. For example, the C declaration

int maxcount=99;

appearing outside any function causes this variable to be stored
in the initialized data segment with its initial value.

4

• Uninitialized data segment: This segment is often called the
”bss” segment, named after an ancient assembler operator that
stood for ”block started by symbol.” Data in this segment is ini-
tialized by the kernel to arithmetic 0 or null pointers before the
program starts executing. The C declaration

long sum[1000];

appearing outside any function causes this variable to be stored
in the uninitialized data segment.

2. Stack: This is where automatic variables are stored, along with in-
formation that is saved each time a function is called. Each time a
function is called, the address of where to return to, and certain infor-
mation about the caller’s environment (such as some of the machine
registers) is saved on the stack. The newly called function then allo-
cates room on the stack for its automatic and temporary variables. By
utilizing a stack in this fashion, C functions can be recursive.

3. Heap: Dynamic memory allocation usually takes place on the heap.
Historically the heap has been located between the top of the unini-
tialized data and the bottom of the stack.

Summary;

• Initialized Read Only Data; This contains the data elements that are
initialized by the program and they are read only during the execution
of the process.

• Initialized Read Write Data; This contains the data elements that are
initialized by the program and will be modified in the course of process
execution.

• Uninitialized Data; This contains the elements are not initialized by
the program and are set 0 before the processes executes. These can
also be modified and referred as BSS(Block Started Symbol).

• Stack; This portion is used for local variables, stack frames.

• Heap; This portion contains the dynamically allocated memory.

5

int abc = 1; ----> Initialized Read-Write Data

char *str; ----> BSS

const int i = 10; ----> Initialized Read-Only Data

main()

{

int ii,a=1,b=2,c; ----> Local Variables on Stack

char *ptr;

ptr = malloc(4); ----> Allocated Memory in Heap

c= a+b; ----> Text

}

1.2.1 Examples&Exercises:

1. Study the command;

$ size /usr/bin/gcc /bin/sh

• Try to explain what you obtained!

2. Memory layout of a C program; a program to display process memory
boundary ; code47.c

• Study the code in detail.

• What are the followings?

extern int _end;

extern int _etext;

extern int _edata;

extern int __bss_start;

extern char **environ;

Make a search about them.

• Analyze the positions and lengths of the portions.

• Try to understand the order of the appearance of the variables
(local, global, automatic, initialized, uninitialized).

• Modify to code such that

– able to print out the content of the variables,

– increase the number of the arguments,

– able to print out arguments,

– able to print out environment.

6

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code47.c

	OPERATING SYSTEMS LABORATORY VIII - Memory Management I
	Memory Management
	Examples&Exercises:

	Memory Arrangement
	Examples&Exercises:

