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Extension Meaning

file.bak Backup file

file.c C source program

file.gif Compuserve Graphical Interchange Format image
file.hlp Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Fig. 6-1. Some typical file extensions.
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Fig. 6-2. Three kinds of files. (a) Byte sequence. (b) Record
sequence. (c) Tree.
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Fig. 6-3. (@) An executable file. (b) An archive.
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Attribute

Meaning

Protection Who can access the file and in what way

Password Password needed to access the file

Creator ID of the person who created the file

Owner Current owner

Read-only flag O for read/write; 1 for read only

Hidden flag 0 for normal; 1 for do not display in listings

System flag 0 for normal files; 1 for system file

Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Fig. 6-4. Some possible file attributes.




/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argvl]); /* ANSI prototype */
#define BUF_SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT _MODE 0700 /* protection bits for output file */
int main(int argc, char *argv(])
{
int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];
if (argc = 3) exit(1); /* syntax error if argc is not 3 */
/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */
if (in_fd < 0) exit(2); /% if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); /* create the destination file */
if (out_fd < 0) exit(3); [ if it cannot be created, exit */
/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF_SIZE); /* read a block of data +/
if (rd_count <= 0) break; /% if end of file or error, exit loop */
wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */
}
/* Close the files */
close(in_fd);
close(out_fd);
if (rd_count == 0) /* no error on last read */
exit(0);
else
exit(b); /% error on last read */
}

Fig. 6-5. A simple program to copy afile.
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Fig. 6-6. (2) A segmented process before mapping filesinto its
address space. (b) The process after mapping an existing file abc
into one segment and creating a new segment for file xyz.



——Root directory

Fig. 6-7. A single-level directory system containing four files,
owned by three different people, A, B, and C.
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Fig. 6-8. A two-level directory system. The letters indicate the
owners of the directories and files.
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Fig. 6-9. A hierarchical directory system.
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Fig. 6-12. (a) Contiguous allocation of disk space for seven files.
(b) The state of the disk after files D and F have been removed.



Physical
block

File A

File
block

0

File
block

4

7

File
block

File
block

File
block

File B

10

12

File
block
0

File
block

File
block

Physical

block

6

3

11

File
block
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Fig. 6-14. Linked list alocation using afile allocation table in
main memory.
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Fig. 6-15. An example i-node.
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Fig. 6-16. (a) A simple directory containing fixed-size entries with
the disk addresses and attributes in the directory entry. (b) A direc-
tory in which each entry just refers to an i-node.
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Fig. 6-17. Two ways of handling long file names in a directory.
(@) In-line. (b) In a heap.
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Fig. 6-18. File system containing a shared file.
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Fig. 6-19. (a) Situation prior to linking. (b) After thelink is
created. (c) After the original owner removes thefile.
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Fig. 6-20. The solid curve (left-hand scale) gives the datarate of a
disk. The dashed curve (right-hand scale) gives the disk space
efficiency. All filesare 2 KB.



Free disk blocks: 16, 17, 18
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Fig. 6-21. (a) Storing the freelist on alinked list. (b) A bitmap.



. Disk
Main

Fig. 6-22. (a) An amost-full block of pointers to free disk blocks
in memory and three blocks of pointers on disk. (b) Result of free-
ing athree-block file. (c) An alternative strategy for handling the
three free blocks. The shaded entries represent pointers to free disk

blocks.
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Fig. 6-23. Quotas are kept track of on a per-user basisin a quota
table.
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Fig. 6-24. A file system to be dumped. The squares are directories
and the circles arefiles. The shaded items have been modified
since the last dump. Each directory and file islabeled by itsi-

node number.
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Fig. 6-25. Bit maps used by the logical dumping algorithm.



Block number Block number
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Fig. 6-26. File system states. (a) Consistent. (b) Missing block.
(c) Duplicate block in freelist. (d) Duplicate data block.
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Fig. 6-27. The buffer cache data structures.
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Fig. 6-28. (a) I-nodes placed at the start of the disk. (b) Disk
divided into cylinder groups, each with its own blocks and i-nodes.
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Fig. 6-29. The 1SO 9660 directory enty.
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Fig. 6-30. Memory layout of CP/M.
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Fig. 6-31. The CP/M directory entry format.




Bytes 8 3 1 10 2 2 2 4

File name Size

Extension Attributes Reserved Time Date First
block

number

Fig. 6-32. The MS-DOS directory entry.



Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1TB
8 KB 512 MB 27TB
16 KB 1024 MB 21B
32 KB 2048 MB 2TB

Fig. 6-33. Maximum partition size for different block sizes.
The empty boxes represent forbidden combinations.



Bytes 8 3 11 1 4 2 4 4
N Creation Last Last write .
Base name Ext T date/time |access date/time File size
Attributes f T . T .
Sec Upper 16 bits Lower 16 bits

Fig. 6-34. The extended MOS-DOS directory entry used in

Windows 98.
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Fig. 6-35. An entry for (part of) along file name in Windows 98.
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Fig. 6-36. An example of how along name is stored in Windows

98.
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Fig. 6-37. A UNIX V7 directory entry.
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Fig. 6-38. A UNIX i-node.



Block 132 I-node 26 Block 406
I-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory /usr/ast directory
1 6| e 26 | o
Mode Mode
1 size 1| e size 6| o
X times X times
4 | bin 19 | dick 64 | grants
7 | dev 132 30 | erik 406 92 | books
14 | lib 51 | jim 60 | mbox
9 | etc 26 | ast 81 | minix
6 | usr 45 | bal 17 | src
8 | tmp
I-node 6 I-node 26
Looking up says that Jusr/ast says that {usr/ast/mbox
usr yields fusr is in is i-node Jusr/ast is in is i-node
i-node 6 block 132 26 block 406 60

Fig. 6-39. The steps in looking up /usr/ast/mbox.




