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Fig. 1-1. A computer system consists of hardware, system pro-
grams, and application programs.
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Fig. 1-2. An early batch system. (a) Programmers bring cards to
1401. (b) 1401 reads batch of jobs onto tape. (c) Operator carries
input tape to 7094. (d) 7094 does computing. (€) Operator carries
output tape to 1401. (f) 1401 prints output.
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Fig. 1-4. A multiprogramming system with three jobs in memory.
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Fig. 1-5. Some of the components of a simple personal computer.




Fetch
unit

Decode
unit

Execute
unit

(@)

Fetch Decode
unit unit

Fetch Decode
unit unit

Execute
unit

Execute
unit

Execute
unit

(b)

Fig. 1-6. (a) A three-stage pipeline. (b) A superscalar CPU.
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Fig. 1-7. A typica memory hierarchy. The numbers are very rough

approximations.
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Fig. 1-9. (@) Use of one base-limit pair. The program can access
memory between the base and the limit. (b) Use of two base-limit
pairs. The program code is between Base-1 and Limit-1 whereas
the data are between Base-2 and Limit-2.
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Fig. 1-10. (a) The stepsin starting an 1/O device and getting an
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Fig. 1-11. The structure of alarge Pentium system
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Fig. 1-12. A process tree. Process A created two child processes, B
and C. Process B created three child processes, D, E, and F.




Fig. 1-13. (@) A potential deadlock. (b) An actual deadlock.
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Fig. 1-14. A file system for a university department.
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Fig. 1-15. (a) Before mounting, the files on drive O are not accessi-
ble. (b) After mounting, they are part of the file hierarchy.
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Fig. 1-16. Two processes connected by a pipe.
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Fig. 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).



Process management

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

s = execve(name, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file's status information

Directory and file

system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(namel, name?2)

Create a new entry, namez2, pointing to namel

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = umount(special)

Unmount a file system

Miscellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file's protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Fig. 1-18. Some of the major POSIX system calls. The return code

sis—1if an error has occurred.

The return codes are as follows:;

pid isaprocessid, fd isafile descriptor, nis abyte count, position
is an offset within the file, and secondsis the elapsed time. The
parameters are explained in the text.




#define TRUE 1

while (TRUE) { /* repeat forever */
type _prompt( ); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() '=0) { /* fork off child process */
[* Parent code. */
waitpid(-1, &status, 0); /* wait for child to exit */
} else {

[* Child code. */
execve(command, parameters, 0); /* execute command */

Fig. 1-19. A stripped-down shell. Throughout this book, TRUE is
assumed to be defined as 1.
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Fig. 1-20. Processes have three segments: text, data, and stack.
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Fig. 1-21. (a) Two directories before linking /usr/jim/memo to
ast’ s directory. (b) The same directories after linking.
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Fig. 1-22. (a) File system before the mount. (b) File system after
the mount.



UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve

exit ExitProcess Terminate execution

open CreateFile Create a file or open an existing file
close CloseHandle Close a file

read ReadFile Read data from a file
write WriteFile Write data to a file

Iseek SetFilePointer Move the file pointer

stat GetFileAttributesEx | Get various file attributes

mkdir CreateDirectory Create a new directory

rmdir RemoveDirectory Remove an empty directory

link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file

mount | (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetLocalTime Get the current time

Fig. 1-23. The Win32 API calls that roughly correspond to the
UNIX calls of Fig. 1-18.
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Fig. 1-24. A ssimple structuring model for a monolithic system.
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Fig. 1-25. Structure of the THE operating system.
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Fig. 1-26. The structure of VM/370 with CMS.
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Fig. 1-27. The client-server model.
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Fig. 1-28. The client-server model in a distributed system.




Exp. | Explicit Prefix | Exp. Explicit Prefix
1078 0.001 milli 108 1,000 | Kilo
107° 0.000001 micro | 10° 1,000,000 | Mega
107° 0.000000001 nano | 10° 1,000,000,000 | Giga
10712 0.000000000001 pico 10%? 1,000,000,000,000 | Tera
107 0.000000000000001 femto | 10'° 1,000,000,000,000,000 | Peta
10718 0.0000000000000000001 atto 108 1,000,000,000,000,000,000 | Exa
10721 0.0000000000000000000001 zepto | 10?% 1,000,000,000,000,000,000,000 | Zetta
10724 0.0000000000000000000000001 | yocto | 10%* [1,000,000,000,000,000,000,000,000 | Yotta

Fig. 1-29. The principal metric prefixes.




