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Fig. 4-1. Three simple ways of organizing memory with an operat-
ing system and one user process. Other possibilities also exist.
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Fig. 4-2. (@) Fixed memory partitions with separate input queues
for each partition. (b) Fixed memory partitions with a single input
queue.
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Fig. 4-3. CPU utilization as afunction of the number of processes
In memory.
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Arrival  minutes # Processes
Job time needed 1 2 3 4
1 10:00 4 CPU idle 80| .64 | 51| .41
2 10:10 3 CPU busy .20 | .36 | .49 | .59
3 10:15 2 CPU/process | .20 | .18 | .16 | .15
4 10:20 2
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Fig. 4-4. (a) Arrival and work requirements of four jobs. (b) CPU
utilization for 1 to 4 jobs with 80 percent I/O wait. (c) Sequence
of events as jobs arrive and finish. The numbers above the hor-
izontal lines show how much CPU time, in minutes, each job gets
in each interval.
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Fig. 4-5. Memory allocation changes as processes come into
memory and leave it. The shaded regions are unused memory.
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Fig. 4-6. (@) Allocating space for a growing data segment.
(b) Allocating space for a growing stack and a growing data seg-

ment.
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Fig. 4-7. (@) A part of memory with five processes and three holes.
The tick marks show the memory allocation units. The shaded
regions (O in the bitmap) are free. (b) The corresponding bitmap.
(c) The sameinformation asalist.
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Fig. 4-8. Four neighbor combinations for the terminating process,
X.
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Fig. 4-9. The position and function of the MMU. Here the MMU
Is shown as being a part of the CPU chip because it commonly is
nowadays. However, logically it could be a separate chip and was
in years gone by.
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Fig. 4-10. The relation between virtual addresses and physical
memory addresses is given by the page table.
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pages.
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Fig. 4-12. (a) A 32-bit address with two page table fields.
(b) Two-level page tables.
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Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

Fig. 4-14. A TLB to speed up paging.
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Fig. 4-15. Comparison of atraditional page table with an inverted
page table.
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Fig. 4-16. Operation of second chance. (@) Pages sorted in FIFO
order. (b) Page list if a page fault occurs at time 20 and A hasits R
bit set. The numbers above the pages are their loading times.



When a page fault occurs,
the page the hand is
J D pointing to is inspected.

The action taken depends
on the R bit:
R = 0: Evict the page
R = 1: Clear R and advance hand

Fig. 4-17. The clock page replacement algorithm.
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Fig. 4-18. LRU using a matrix when pages are referenced in the

order 0, 1,2,3,2,1,0, 3, 2, 3.



R bits for i R bits for i R bits for i R bits for i R bits for
pages 0-5, | pages 0-5, | pages 0-5, | pages 0-5, | pages 0-5,
clock tick 0 i clock tick 1 i clock tick 2 i clock tick 3 i clock tick 4

|1 of1]of1 1| 3|1 1|olo]1 o| 3|1 1]ol1]o 1| 3|1 olofo]1 0| 3|o 1]1/ofo 0|
| | | |
page | | | |
| | | |

o 10000000 |!| 11000000 || 11100000 | ! | 11110000 |i | o1111000 |
| | | |

1 | 00000000 | i | 10000000 | i | 11000000 | i | 01100000 | i | 10110000 |
| | | |

2 | 10000000 | % | 01000000 | % | 00100000 | % | 00100000 | % | 10001000 |
| | | |

3 | 00000000 | i | 00000000 | i | 10000000 | i | 01000000 | i | 00100000 |
| | | |

4| 10000000 | % | 11000000 | % | 01100000 | % | 10110000 | % | 01011000 |
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@ | () | (c) | (d) | (e)

Fig. 4-19. The aging algorithm simulates LRU in software.
Shown are six pages for five clock ticks. The five clock ticks are

represented by (@) to (e).
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Fig. 4-20. The working set is the set of pages used by the k most
recent memory references. The function w(k, t) is the size of the
working set at timet.
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Fig. 4-21. The working set algorithm.
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an example of what happenswhen R=1. (c) and (d) give an
example of R=0.
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Fig. 4-23. Page replacement algorithms discussed in the text.
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Fig. 4-24. Belady’ s anomaly. (a) FIFO with three page frames.
(b) FIFO with four page frames. The P’s show which page refer-
ences cause page faults.
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Fig. 4-25. The state of the memory array, M, after each item in the
reference string is processed. The distance string will be discussed
in the next section.
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Fig. 4-26. Probability density functions for two hypothetical
distance strings.
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Fig. 4-27. Computation of the page fault rate from the distance
string. (@) The C vector. (b) F vector.
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Fig. 4-28. Local versus global page replacement. (a) Original con-
figuration. (b) Local page replacement. (c) Global page replace-
ment.
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Fig. 4-29. Page fault rate as a function of the number of page
frames assigned.
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Fig. 4-30. (a) One address space. (b) Separate | and D spaces.
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Fig. 4-31. Two processes sharing the same program sharing its
page table.
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Fig. 4-32. Aninstruction causing a page fault.
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Fig. 4-33. (a) Paging to a static swap area. (b) Backing up pages
dynamically.
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Fig. 4-35. In aone-dimensional address space with growing tables,
one table may bump into another.
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Fig. 4-36. A segmented memory allows each table to grow or
shrink independently of the other tables.



Consideration Paging Segmentation
Need the programmer be aware No Yes
that this technique is being used?
How many linear address 1 Many
spaces are there?
Can the total address space Yes Yes
exceed the size of physical
memory?
Can procedures and data be No Yes
distinguished and separately
protected?
Can tables whose size fluctuates No Yes
be accommodated easily?
Is sharing of procedures No Yes

between users facilitated?

Why was this technique
invented?

To get a large
linear address
space without
having to buy
more physical
memory

To allow programs
and data to be broken
up into logically
independent address
spaces and to aid
sharing and
protection

Fig. 4-37. Comparison of paging and segmentation.
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Fig. 4-38. (a)-(d) Development of checkerboarding. (€) Removal

of the checkerboarding by compaction.




—~——36 bits———

l l Page 2 entry

Page 1 entry

Segment 6 descriptor Page 0 entry
Segment 5 descriptor Page table for segment 3
Segment 4 descriptor
Segment 3 descriptor l l
Segment 2 descriptor T T
Segment 1 descriptor Page 2 entry
Segment 0 descriptor Page 1 entry
Descriptor segment Page O entry

Page table for segment 1

(a)
18 9 111 3 3
Main memory address Segment length
of the page table (in pages)
) \ A A

Page size:
0 = 1024 words
1 =64 words

0 = segment is paged
1 = segment is not paged

Miscellaneous bits

Protection bits

(b)

Fig. 4-39. The MULTICS virtual memory. (a) The descriptor seg-
ment points to the page tables. (b) A segment descriptor. The
numbers are the field lengths.
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Fig. 4-40. A 34-bit MULTICS virtual address.
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Comparison Is this

field entry
. . . used?
Segment Virtual Page
number page frame Protection Age i
4 1 7 Read/write 13 |1
6 0 2 Read only 10 | 1
12 3 1 Read/write 2 1
0
2 1 0 Execute only 7 1
2 2 12 Execute only 9 1
\\/—v

Fig. 4-42. A simplified version of the MULTICS TLB. The
existence of two page sizes makes the actual TLB
more complicated.
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Fig. 4-43. A Pentium selector.



0: 16-Bit segment [ 0: Segment is absent from memory

1: 32-Bit segment | 1: Segment is present in memory
——  Privilege level (0-3)

0: Li is in bytes 0: System

1: Liis in pages 1: Application

+— Segment type and protection

Base24-31  |G|D[of] iMe |P|DPL|S| Type Base 16-23 4
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32 Bits Relative

address

Fig. 4-44. Pentium code segment descriptor. Data segments differ
dightly.
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Fig. 4-45. Conversion of a (selector, offset) pair to alinear

address.




Linear address

Bits 10 10 12
Dir Page Offset
@)
Page directory Page table Page frame
T ; r J~ vl Word t|~ J R
selected

1024
Entries T

Dir

Directory entry

points to
page table

Page

Page table

/

entry points

to word

(b)

v

Offset

Fig. 4-46. Mapping of alinear address onto a physical address.
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Fig. 4-47. Protection on the Pentium.



