6

FILE SYSTEMS

6.1 FILES

6.2 DIRECTORIES

6.3 FILE SYSTEM IMPLEMENTATION
6.4 EXAMPLE FILE SYSTEMS

6.5 RESEARCH ON FILE SYSTEMS
6.6 SUMMARY



Extension Meaning

file.bak Backup file

file.c C source program

file.gif Compuserve Graphical Interchange Format image
file.hlp Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Fig. 6-1. Some typical file extensions.




1 Byte 1 Record

e re
” Ant | Fox | Pig |
|| Cat || Cow || Dog || || Goat | Lion || owl || || Pony || Rat ”WOrm”
| Hen ” Ibis ” Lambl
(@ (b) (©

Fig. 6-2. Three kinds of files. (a) Byte sequence. (b) Record
sequence. (c) Tree.



Magic number

Text size

Data size

BSS size

Symbol table size

Entry point

Flags

~——— Header — |

~ Text

CC

A Data

D
CC

A Relocation
§ bits

A Symbol
i table

@)

Fig. 6-3. (@) An executable file. (b) An archive.

Header

Object
module

Header

Object
module

Header

Object
module

(b)

Module
name

Date

Owner

Protection

Size




Attribute

Meaning

Protection Who can access the file and in what way

Password Password needed to access the file

Creator ID of the person who created the file

Owner Current owner

Read-only flag O for read/write; 1 for read only

Hidden flag 0 for normal; 1 for do not display in listings

System flag 0 for normal files; 1 for system file

Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Fig. 6-4. Some possible file attributes.




/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argvl]); /* ANSI prototype */
#define BUF_SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT _MODE 0700 /* protection bits for output file */
int main(int argc, char *argv(])
{
int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];
if (argc = 3) exit(1); /* syntax error if argc is not 3 */
/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */
if (in_fd < 0) exit(2); /% if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); /* create the destination file */
if (out_fd < 0) exit(3); [ if it cannot be created, exit */
/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF_SIZE); /* read a block of data +/
if (rd_count <= 0) break; /% if end of file or error, exit loop */
wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */
}
/* Close the files */
close(in_fd);
close(out_fd);
if (rd_count == 0) /* no error on last read */
exit(0);
else
exit(b); /% error on last read */
}

Fig. 6-5. A simple program to copy afile.



Program Program

text text abe

Data Data Xyz

@) (b)

Fig. 6-6. (2) A segmented process before mapping filesinto its
address space. (b) The process after mapping an existing file abc
into one segment and creating a new segment for file xyz.



——Root directory

Fig. 6-7. A single-level directory system containing four files,
owned by three different people, A, B, and C.



——Root directory

User
directory

Fig. 6-8. A two-level directory system. The letters indicate the
owners of the directories and files.



——Root directory

User / \

director
Y~I'A B C

® Hom Ko
1 &

User subdirectories
e e —— User file

Fig. 6-9. A hierarchical directory system.



etc

lib

usr

tmp

bin etc lib

ast

bin [<— Root directory

usr

ast

jim

lib

lib

jim

dict.

Fig. 6-10. A UNIX directory tree.

tmp

—— [usr/jim



A

Partition table

\

—

Entire disk

Disk partition

b~

Y

\

MBR

Boot block

Super block

Free space mgmt

I-nodes

Root dir

Files and directories

Fig. 6-11. A possible file system layout.




File A File C File E File G

(4 blocks) (6 blocks) (12 blocks) (3 blocks)
f—/% f—% r Al f—/%
HEEEEENEEEEEENEEENEEEEEEEEEEEEEEEEEEEEEE
- — - — - —
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
()

(File A) (File C) (File E) (File G)
f—/% f—% r Al f—/%
HEEEEENEEENEEEEEEEEEEEEEEEEEEEEEEEEEEEEEWw

- — - — -
File B 5 Free blocks 6 Free blocks
(b)

Fig. 6-12. (a) Contiguous allocation of disk space for seven files.
(b) The state of the disk after files D and F have been removed.



Physical
block

File A

File
block

0

File
block

4

7

File
block

File
block

File
block

File B

10

12

File
block
0

File
block

File
block

Physical

block

6

3

11

File
block

Fig. 6-13. Storing afile asalinked list of disk blocks.

14




Physical

block

0
2 10
3 11
4 7 —~—— File A starts here
5
6 3 —~—— File B starts here
7 2
8
9

10 12

11 14

12 -1

13

14 -1

15 ——— Unused block

Fig. 6-14. Linked list alocation using afile allocation table in
main memory.



File Attributes

Address of disk block 0 —>

Address of disk block 1 —>

Address of disk block 2 —

Address of disk block 3 —

Address of disk block 4 -

Address of disk block 5 —

Address of disk block 6 —

Address of disk block 7 —

Address of block of pointers

Y

Disk block

containing

additional
disk addresses

Fig. 6-15. An example i-node.



|
games | attributes

games

mail

news

work

mail | attributes

news i attributes
|

work | attributes
(@)

™

Data structure
containing the
attributes

Fig. 6-16. (a) A simple directory containing fixed-size entries with
the disk addresses and attributes in the directory entry. (b) A direc-
tory in which each entry just refers to an i-node.



[ File 1 entry length L Pointer to file 1's name Entry
for one
File 1 attributes File 1 attributes file
Entry ; 5 - - ——
for one P J Pointer to file 2's name
file e ¢ t - . :
b 0 d 9 File 2 attributes
LL_© t X | Pointer to file 3's name
File 2 entry length
File 3 attributes
File 2 attributes
p e r s
o} n n A
| X p r 0 i
File 3 entry length e ¢ t -
b u d g
File 3 attributes e t p
Heap
f | o | o | ¥ e r s 0
n n e I
f 0 o]
X ]
@) (b)

Fig. 6-17. Two ways of handling long file names in a directory.
(@) In-line. (b) In a heap.



Root directory

Shared file

Fig. 6-18. File system containing a shared file.



C's directory B's directory C's directory B's directory

\ 1

/ \ / \
Owner=C Owner =C Owner =C
Count=1 Count=2 Count=1

: | l
O O O

(@) (b) ()

Fig. 6-19. (a) Situation prior to linking. (b) After thelink is
created. (c) After the original owner removes thefile.



1000 [~ ———————+———9+——— o — 1000
Disk space utilization \\

c

o 800 - —{80 8

2 8
m ==
X 600 - 160 55
) Q9
T g8
E 400 | —H 40 S~

8 g

200 |- —20 ©

Data rate e
0 Py Py f | | | | | 0
0 128 256 512 1K 2K 4K 8K 16K 0

Block size (bytes)

Fig. 6-20. The solid curve (left-hand scale) gives the datarate of a
disk. The dashed curve (right-hand scale) gives the disk space
efficiency. All filesare 2 KB.



Free disk blocks: 16, 17, 18

42 r 230 /> 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
97 342 422 0110110110111011
41 214 140 1110111011101111
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111
262 320 126 1100100011101111
310 180 142 0111011101110111
516 / 482 / 141 1101111101110111
A 1-KB disk block can hold 256 A bitmap

32-bit disk block numbers
(@) (b)

Fig. 6-21. (a) Storing the freelist on alinked list. (b) A bitmap.



. Disk
Main

Fig. 6-22. (a) An amost-full block of pointers to free disk blocks
in memory and three blocks of pointers on disk. (b) Result of free-
ing athree-block file. (c) An alternative strategy for handling the
three free blocks. The shaded entries represent pointers to free disk

blocks.



Open file table Quota table
Soft block limit

Attributes
disk addresses Hard block limit
User =8
Current # of blocks
Quota pointer — # Block warnings left Quota
>record
Soft file limit for user 8

Hard file limit

Current # of files

))
138
))
((

# File warnings left

))
[
))
((

Fig. 6-23. Quotas are kept track of on a per-user basisin a quota
table.



1 |[<—— Root directory

o] E
(®) 19

Directory
that has not 20 22
changed
21 23
File that

has changed 24) (25

27
28 29
30

31 32

/

File that has
not changed

Fig. 6-24. A file system to be dumped. The squares are directories
and the circles arefiles. The shaded items have been modified
since the last dump. Each directory and file islabeled by itsi-

node number.



@ |1]2|3]4]5]6]7]e]o]rofs1]12]13|14|15[16[17]18]19[20[21[22]23|24|25[26[27|28]20]30] 31|32

®) |1]2|3]4]5]6]7]8]o]rof11]12]13|14|15[16[17]18]19[20[21[22]23]|24|25[26[27|28]29]30]31|32]

© |1]|2]3|4[5]6]7]8]orofr1]r2]13|14|15[16[17]18]19|20[21[22]23]2425|26[27[28]29]30]31|32]

@ |1]2|3]4]5]6]7]8]o]r0f11]r12]13|14|15[16]17]18]10|20[21{22]23]24]25[26[27|28]29]30]3132]

Fig. 6-25. Bit maps used by the logical dumping algorithm.



Block number Block number

012345678 9101112131415 012345678 9101112131415
[1]2]o[2]o]1[2]1]2]0[o[1]1][2]0|o]|Blocksinuse  [1]1]o[2]0[1[1]1]2]0]o]1|1][1]0]0]Blocks in use

lo[o[1[o[1]o[o]o[o]1|1][0]o[o]1|1]|Free blocks lo[o]o[o[1]o[o]o[o]1[1][0]o[o]1|1]Free blocks
(@ (b)
012345678 9101112131415 012345678 9101112131415

|1[2]o[2]o]1[2]1]2]o[o[1]1[1]0]o|Blocksinuse  [1]1]o[1]0[2[1]1]1]0[o[1|1][1]0]0]Blocks in use

lofo[1[o[2]o[o]o[o]1|1][0]o[o]1|1|Free blocks  [o[o]1[o[1]o[o]o[o]1|1]0[o[o]1|1]Free blocks

(© (d)

Fig. 6-26. File system states. (a) Consistent. (b) Missing block.
(c) Duplicate block in freelist. (d) Duplicate data block.



Hash table Front (LRU) Rear (MRU)
* —— —— —— —— —— —— —— ——
] —— —— —— —— —— —— —— ——

/

Fig. 6-27. The buffer cache data structures.



I-nodes are Disk is divided into
located near cylinder groups, each
the start with its own i-nodes
of the disk

Cylinder group

(@) (b)

Fig. 6-28. (a) I-nodes placed at the start of the disk. (b) Disk
divided into cylinder groups, each with its own blocks and i-nodes.



Padding

Bytes 1 1 8 8 7 1 2 4 1 415 Yo
| | | Location of file File Size Date and timel | | CD# |L| File name lSys
L Extended attribute record length Flallgferleave | """" B 256 name | .l Ext | ;|Ve"|

Directory entry length

Fig. 6-29. The 1SO 9660 directory enty.



Address

OXFFFF

BIOS
CP/M
Shell
User program
0x100 Zero page
0

Fig. 6-30. Memory layout of CP/M.



Bytes 1 8 3 1 2 —= 16

Y

File name

T / /I ‘Y Disk bloclz numbers

User code File type Extent Block count
(extension)

Fig. 6-31. The CP/M directory entry format.




Bytes 8 3 1 10 2 2 2 4

File name Size

Extension Attributes Reserved Time Date First
block

number

Fig. 6-32. The MS-DOS directory entry.



Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1TB
8 KB 512 MB 27TB
16 KB 1024 MB 21B
32 KB 2048 MB 2TB

Fig. 6-33. Maximum partition size for different block sizes.
The empty boxes represent forbidden combinations.



Bytes 8 3 11 1 4 2 4 4
N Creation Last Last write .
Base name Ext T date/time |access date/time File size
Attributes f T . T .
Sec Upper 16 bits Lower 16 bits

Fig. 6-34. The extended MOS-DOS directory entry used in

Windows 98.

of starting
block

of starting
block



Bytes 1 10

12

4

5 characters

6 characters

2 characters

N\

/

Sequence Attributes

Checksum

Fig. 6-35. An entry for (part of) along file name in Windows 98.




Bytes

c
68| d o} g 0|k 0
C
3 o v e O|lk| t h e 0
C ,
2 w n Olk| X ] u m 0
C
11 7T h e O|k| u i c k 0
_ N Creation |Last Last )
T(H E Q U | 1 TIS time acc | Upp write Low Size

Fig. 6-36. An example of how along name is stored in Windows

98.




Bytes 2 14

File name

I-node
number

Fig. 6-37. A UNIX V7 directory entry.



I-node

Attributes .
. | Single
1 ,  indirect
& 1, block
3 I Addresses of
N Double
(] =
=P indirect =" data blocks
©
®© block 1,
% v
(a) T
3 T
) \ Triple =
7 indirect T 3
J block
\_/ 7
\ 1,
T
T =
T

Fig. 6-38. A UNIX i-node.



Block 132 I-node 26 Block 406
I-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory /usr/ast directory
1 6| e 26 | o
Mode Mode
1 size 1| e size 6| o
X times X times
4 | bin 19 | dick 64 | grants
7 | dev 132 30 | erik 406 92 | books
14 | lib 51 | jim 60 | mbox
9 | etc 26 | ast 81 | minix
6 | usr 45 | bal 17 | src
8 | tmp
I-node 6 I-node 26
Looking up says that Jusr/ast says that {usr/ast/mbox
usr yields fusr is in is i-node Jusr/ast is in is i-node
i-node 6 block 132 26 block 406 60

Fig. 6-39. The steps in looking up /usr/ast/mbox.




