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Fig. 2-1. (a) Multiprogramming of four programs. (b) Conceptual
model of four independent, sequential processes. (c) Only one
program is active at once.
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Fig. 2-2. A process can be in running, blocked, or ready state.
Transitions between these states are as shown.
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Fig. 2-3. The lowest layer of a process-structured operating system
handles interrupts and scheduling. Above that layer are sequential
processes.
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Process management Memory management File management
Registers Pointer to text segment Root directory
Program counter Pointer to data segment Working directory
Program status word Pointer to stack segment File descriptors
Stack pointer User ID
Process state Group ID
Priority
Scheduling parameters
Process ID
Parent process
Process group
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Time when process started
CPU time used
Children’s CPU time
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Fig. 2-4. Some of the fields of a typical process table entry.
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1. Hardware stacks program counter, etc.
2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.
4. Assembly language procedure sets up new stack.
5. C interrupt service runs (typically reads and buffers input).
6. Scheduler decides which process is to run next.
7. C procedure returns to the assembly code.
8. Assembly language procedure starts up new current process.22222222222222222222222222222222222222222222222222222222222211
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Fig. 2-5. Skeleton of what the lowest level of the operating system
does when an interrupt occurs.
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Fig. 2-6. (a) Three processes each with one thread. (b) One process
with three threads.
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Per process items Per thread items
Address space Program counter
Global variables Registers
Open files Stack
Child processes State
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Fig. 2-7. The first column lists some items shared by all threads in
a process. The second one lists some items private to each thread.



 Kernel 

Thread 3's stack

Process

Thread 3Thread 1

Thread 2

Thread 1's
stack

Fig. 2-8. Each thread has its own stack.



Kernel
Keyboard Disk

Four score and seven 
years ago, our fathers 
brought forth upon this 
continent a new nation: 
conceived in liberty, 
and dedicated to the 
proposition that all 
men are created equal. 
  Now we are engaged 
in a great civil war 
testing whether that 

nation, or any nation 
so conceived and so 
dedicated, can long 
endure. We are met on 
a great battlefield of 
that war.
  We have come to 
dedicate a portion of 
that field as a final 
resting place for those 
who here gave their 

lives that this nation 
might live. It is 
altogether fitting and 
proper that we should 
do this. 
  But, in a larger sense, 
we cannot dedicate, we 
cannot consecrate we 
cannot hallow this 
ground. The brave 
men, living and dead, 

who struggled here 
have consecrated it, far 
above our poor power 
to add or detract. The 
world will little note, 
nor long remember, 
what we say here, but 
it can never forget 
what they did here.
   It is for us the living, 
rather, to be dedicated 

here to the unfinished 
work which they who 
fought here have thus 
far so nobly advanced. 
It is rather for us to be 
here dedicated to the 
great task remaining 
before us, that from 
these honored dead we 
take increased devotion 
to that cause for which 

they gave the last full 
measure of devotion, 
that we here highly 
resolve that these dead 
shall not have died in 
vain that this nation, 
under God, shall have 
a new birth of freedom 
and that government of 
the people by the 
people, for the people 

Fig. 2-9. A word processor with three threads.
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Fig. 2-10. A multithreaded Web server.



while (TRUE) { while (TRUE) {
get3next3request(&buf); wait3 for3work(&buf)
handoff3work(&buf); look3for3page3 in3cache(&buf, &page);

} if (page3not3 in3cache(&page))
read3page3 from3disk(&buf, &page);

return3page(&page);
}

(a) (b)

Fig. 2-11. A rough outline of the code for Fig. 2-10. (a) Dispatcher
thread. (b) Worker thread.
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Fig. 2-12. Three ways to construct a server.
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Fig. 2-13. (a) A user-level threads package. (b) A threads package
managed by the kernel.
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Fig. 2-14. Multiplexing user-level threads onto kernel-level
threads.
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Fig. 2-15. Creation of a new thread when a message arrives.
(a) Before the message arrives. (b) After the message arrives.
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Fig. 2-16. Conflicts between threads over the use of a global vari-
able.
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Fig. 2-17. Threads can have private global variables.
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Fig. 2-18. Two processes want to access shared memory at the
same time.
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Fig. 2-19. Mutual exclusion using critical regions.



while (TRUE) { while (TRUE) {
while (turn != 0) /* loop */ ; while (turn != 1) /* loop */ ;
critical3region( ); critical3region( );
turn = 1; turn = 0;
noncritical3region( ); noncritical3region( );

} }

(a) (b)

Fig. 2-20. A proposed solution to the critical region problem.
(a) Process 0. (b) Process 1. In both cases, be sure to note the
semicolons terminating the while statements.



#define FALSE 0
#define TRUE 1
#define N 2 /* number of processes */

int turn; /* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE) */

void enter3region(int process); /* process is 0 or 1 */
{

int other; /* number of the other process */

other = 1 − process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */ ;

}

void leave3region(int process) /* process: who is leaving */
{

interested[process] = FALSE; /* indicate departure from critical region */
}

Fig. 2-21. Peterson’s solution for achieving mutual exclusion.



enter3region:
TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER,#0 | was lock zero?
JNE enter3region | if it was non zero, lock was set, so loop
RET | return to caller; critical region entered

leave3region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

Fig. 2-22. Entering and leaving a critical region using the TSL
instruction.



#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */

void producer(void)
{

int item;

while (TRUE) { /* repeat forever */
item = produce3 item( ); /* generate next item */
if (count == N) sleep( ); /* if buffer is full, go to sleep */
insert3 item(item); /* put item in buffer */
count = count + 1; /* increment count of items in buffer */
if (count == 1) wakeup(consumer); /* was buffer empty? */

}
}

void consumer(void)
{

int item;

while (TRUE) { /* repeat forever */
if (count == 0) sleep( ); /* if buffer is empty, got to sleep */
item = remove3 item( ); /* take item out of buffer */
count = count − 1; /* decrement count of items in buffer */
if (count == N − 1) wakeup(producer); /* was buffer full? */
consume3 item(item); /* print item */

}
}

Fig. 2-23. The producer-consumer problem with a fatal race condi-
tion.



#define N 100 /* number of slots in the buffer */
typedef int semaphore; /* semaphores are a special kind of int */
semaphore mutex = 1; /* controls access to critical region */
semaphore empty = N; /* counts empty buffer slots */
semaphore full = 0; /* counts full buffer slots */

void producer(void)
{

int item;

while (TRUE) { /* TRUE is the constant 1 */
item = produce3 item( ); /* generate something to put in buffer */
down(&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
insert3 item(item); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&full); /* increment count of full slots */

}
}

void consumer(void)
{

int item;

while (TRUE) { /* infinite loop */
down(&full); /* decrement full count */
down(&mutex); /* enter critical region */
item = remove3 item( ); /* take item from buffer */
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */
consume3 item(item); /* do something with the item */

}
}

Fig. 2-24. The producer-consumer problem using semaphores.



mutex3 lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread3yield | mutex is busy; schedule another thread
JMP mutex3 lock | try again later

ok: RET | return to caller; critical region entered

mutex3unlock:
MOVE MUTEX,#0 | store a 0 in mutex
RET | return to caller

Fig. 2-25. Implementation of mutex3lock and mutex3unlock.



monitor example
integer i;
condition c;

procedure producer( );
.
.
.
end;

procedure consumer( );
.
.
.
end;

end monitor;

Fig. 2-26. A monitor.



monitor ProducerConsumer
condition full, empty;
integer count;

procedure insert(item: integer);
begin

if count = N then wait(full);
insert3item(item);
count := count + 1;
if count = 1 then signal(empty)

end;

function remove: integer;
begin

if count = 0 then wait(empty);
remove = remove3 item;
count := count − 1;
if count = N − 1 then signal(full)

end;

count := 0;
end monitor;

procedure producer;
begin

while true do
begin

item = produce3 item;
ProducerConsumer.insert(item)

end
end;

procedure consumer;
begin

while true do
begin

item = ProducerConsumer.remove;
consume3item(item)

end
end;

Fig. 2-27. An outline of the producer-consumer problem with
monitors. Only one monitor procedure at a time is active. The
buffer has N slots.



public class ProducerConsumer {
static final int N = 100; // constant giving the buffer size
static producer p = new producer( ); // instantiate a new producer thread
static consumer c = new consumer( ); // instantiate a new consumer thread
static our3monitor mon = new our3monitor( ); // instantiate a new monitor

public static void main(String args[ ]) {
p.start( ); // start the producer thread
c.start( ); // start the consumer thread

}

static class producer extends Thread {
public void run( ) { // run method contains the thread code

int item;
while (true) { // producer loop

item = produce3 item( );
mon.insert(item);

}
}
private int produce3 item( ) { ... } // actually produce

}

static class consumer extends Thread {
public void run( ) {run method contains the thread code

int item;
while (true) { // consumer loop

item = mon.remove( );
consume3 item (item);

}
}
private void consume3 item(int item) { ... } // actually consume

}

static class our3monitor { // this is a monitor
private int buffer[ ] = new int[N];
private int count = 0, lo = 0, hi = 0; // counters and indices

public synchronized void insert(int val) {
if (count == N) go3to3sleep( ); // if the buffer is full, go to sleep
buffer [hi] = val; // insert an item into the buffer
hi = (hi + 1) % N; // slot to place next item in
count = count + 1; // one more item in the buffer now
if (count == 1) notify( ); // if consumer was sleeping, wake it up

}



public synchronized int remove( ) {
int val;
if (count == 0) go3to3sleep( ); // if the buffer is empty, go to sleep
val = buffer [lo]; // fetch an item from the buffer
lo = (lo + 1) % N; // slot to fetch next item from
count = count − 1; // one few items in the buffer
if (count == N − 1) notify( ); // if producer was sleeping, wake it up
return val;

}
private void go3to3sleep( ) { try{wait( );} catch(InterruptedException exc) {};}

}
}

Fig. 2-28. A solution to the producer-consumer problem in Java.



#define N 100 /* number of slots in the buffer */

void producer(void)
{

int item;
message m; /* message buffer */

while (TRUE) {
item = produce3 item( ); /* generate something to put in buffer */
receive(consumer, &m); /* wait for an empty to arrive */
build3message(&m, item); /* construct a message to send */
send(consumer, &m); /* send item to consumer */

}
}

void consumer(void)
{

int item, i;
message m;

for (i = 0; i < N; i++) send(producer, &m); /* send N empties */
while (TRUE) {

receive(producer, &m); /* get message containing item */
item = extract3 item(&m); /* extract item from message */
send(producer, &m); /* send back empty reply */
consume3 item(item); /* do something with the item */

}
}

Fig. 2-29. The producer-consumer problem with N messages.
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Fig. 2-30. Use of a barrier. (a) Processes approaching a barrier.
(b) All processes but one blocked at the barrier. (c) When the last
process arrives at the barrier, all of them are let through.



Fig. 2-31. Lunch time in the Philosophy Department.



#define N 5 /* number of philosophers */

void philosopher(int i) /* i: philosopher number, from 0 to 4 */
{

while (TRUE) {
think( ); /* philosopher is thinking */
take3fork(i); /* take left fork */
take3fork((i+1) % N); /* take right fork; % is modulo operator */
eat( ); /* yum-yum, spaghetti */
put3 fork(i); /* put left fork back on the table */
put3 fork((i+1) % N); /* put right fork back on the table */

}
}

Fig. 2-32. A nonsolution to the dining philosophers problem.



#define N 5 /* number of philosophers */
#define LEFT (i+N−1)%N /* number of i’s left neighbor */
#define RIGHT (i+1)%N /* number of i’s right neighbor */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */
typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per philosopher */

void philosopher(int i) /* i: philosopher number, from 0 to N−1 */
{

while (TRUE) { /* repeat forever */
think( ); /* philosopher is thinking */
take3forks(i); /* acquire two forks or block */
eat( ); /* yum-yum, spaghetti */
put3 forks(i); /* put both forks back on table */

}
}

void take3 forks(int i) /* i: philosopher number, from 0 to N−1 */
{

down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&s[i]); /* block if forks were not acquired */

}

void put3forks(i) /* i: philosopher number, from 0 to N−1 */
{

down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */

}

void test(i) /* i: philosopher number, from 0 to N−1 */
{

if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
state[i] = EATING;
up(&s[i]);

}
}

Fig. 2-33. A solution to the dining philosophers problem.



typedef int semaphore; /* use your imagination */
semaphore mutex = 1; /* controls access to ’rc’ */
semaphore db = 1; /* controls access to the database */
int rc = 0; /* # of processes reading or wanting to */

void reader(void)
{

while (TRUE) { /* repeat forever */
down(&mutex); /* get exclusive access to ’rc’ */
rc = rc + 1; /* one reader more now */
if (rc == 1) down(&db); /* if this is the first reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
read3data3base( ); /* access the data */
down(&mutex); /* get exclusive access to ’rc’ */
rc = rc − 1; /* one reader fewer now */
if (rc == 0) up(&db); /* if this is the last reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
use3data3read( ); /* noncritical region */

}
}

void writer(void)
{

while (TRUE) { /* repeat forever */
think3up3data( ); /* noncritical region */
down(&db); /* get exclusive access */
write3data3base( ); /* update the data */
up(&db); /* release exclusive access */

}
}

Fig. 2-34. A solution to the readers and writers problem.



Fig. 2-35. The sleeping barber.



#define CHAIRS 5 /* # chairs for waiting customers */

typedef int semaphore; /* use your imagination */

semaphore customers = 0; /* # of customers waiting for service */
semaphore barbers = 0; /* # of barbers waiting for customers */
semaphore mutex = 1; /* for mutual exclusion */
int waiting = 0; /* customers are waiting (not being cut) */

void barber(void)
{

while (TRUE) {
down(&customers); /* go to sleep if # of customers is 0 */
down(&mutex); /* acquire access to ’waiting’ */
waiting = waiting − 1; /* decrement count of waiting customers */
up(&barbers); /* one barber is now ready to cut hair */
up(&mutex); /* release ’waiting’ */
cut3hair( ); /* cut hair (outside critical region) */

}
}

void customer(void)
{

down(&mutex); /* enter critical region */
if (waiting < CHAIRS) { /* if there are no free chairs, leave */

waiting = waiting + 1; /* increment count of waiting customers */
up(&customers); /* wake up barber if necessary */
up(&mutex); /* release access to ’waiting’ */
down(&barbers); /* go to sleep if # of free barbers is 0 */
get3haircut( ); /* be seated and be serviced */

} else {
up(&mutex); /* shop is full; do not wait */

}
}

Fig. 2-36. A solution to the sleeping barber problem.
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Fig. 2-37. Bursts of CPU usage alternate with periods of waiting
for I/O. (a) A CPU-bound process. (b) An I/O-bound process.



All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Fig. 2-38. Some goals of the scheduling algorithm under different
circumstances.
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Fig. 2-39. An example of shortest job first scheduling. (a) Run-
ning four jobs in the original order. (b) Running them in shortest
job first order.
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Fig. 2-40. Three-level scheduling.
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Fig. 2-41. Round-robin scheduling. (a) The list of runnable
processes. (b) The list of runnable processes after B uses up its
quantum.
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Fig. 2-42. A scheduling algorithm with four priority classes.



Process A Process B Process BProcess A

1. Kernel picks a process 1. Kernel picks a thread

Possible:          A1, A2, A3, A1, A2, A3
Also possible:  A1, B1, A2, B2, A3, B3

Possible:          A1, A2, A3, A1, A2, A3
Not possible:   A1, B1, A2, B2, A3, B3

(a) (b)

Order in which
threads run

2. Runtime
    system
    picks a
    thread

1 2 3 1 3 2

Fig. 2-43. (a) Possible scheduling of user-level threads with a 50-
msec process quantum and threads that run 5 msec per CPU burst.
(b) Possible scheduling of kernel-level threads with the same
characteristics as (a).


