A

MEMORY MANAGEMENT

4.1 BASIC MEMORY MANAGEMENT

4.2 SWAPPING

43 VIRTUAL MEMORY

4.4 PAGE REPLACEMENT ALGORITHMS

45 MODELING PAGE REPLACEMENT ALGORITHMS
4.6 DESIGN ISSUES FOR PAGING SYSTEMS

4.7 IMPLEMENTATION ISSUES

4.8 SEGMENTATION

49 RESEARCH ON MEMORY MANAGEMENT

410 SUMMARY

OXFFF ... -
Operating Device
system in drivers in ROM
ROM
User
program User
program
User
program
Operating Operating
system in system in
RAM RAM
0 0 0

(@) (b) (©)

Fig. 4-1. Three simple ways of organizing memory with an operat-
ing system and one user process. Other possibilities also exist.

Multiple

input queues 800K
[H 1 Partition 4 Partition 4
700K
Partition 3 ~ Single Partition 3
Input queue
400K
|:|— Partition 2 Partition 2
200K
[[H H - Partition1 Partition 1
_ 100K ,
Operating Operating
system 0 system
(a) (b)

Fig. 4-2. (@) Fixed memory partitions with separate input queues
for each partition. (b) Fixed memory partitions with a single input
queue.

20% 1/0O wait
£ 100 - ———— .- —
)
e 0 i
g g0 I 50% I/O wait
=
s 60 80% /0 wait
&
S 40
5
Z 20
O

0 1 2 3 4 5 6 7 8 9 10
Degree of multiprogramming

Fig. 4-3. CPU utilization as afunction of the number of processes
In memory.

CPU

Arrival minutes # Processes
Job time needed 1 2 3 4
1 10:00 4 CPU idle 80| .64 | 51| .41
2 10:10 3 CPU busy .20 | .36 | .49 | .59
3 10:15 2 CPU/process | .20 | .18 | .16 | .15
4 10:20 2
(a) (b)
2.0 I 9 I .8 .3 | Job 1 finishes
1 | 9 | 8 | 1 / 1
| . | . | .3 | 9 |11 |
> I Job 2 starts — : : : - |
| | .8 I .3 1 9 . |
3+ | f f f i | I
[[I .31 .9 lat 7 |
4 — | | } } —t {
| | | | I |
0 | | | | [| |
0 10 15 20 22 27.6 28.2 31.7
Time (relative to job 1's arrival)
(©)

Fig. 4-4. (a) Arrival and work requirements of four jobs. (b) CPU
utilization for 1 to 4 jobs with 80 percent I/O wait. (c) Sequence
of events as jobs arrive and finish. The numbers above the hor-
izontal lines show how much CPU time, in minutes, each job gets
in each interval.

Time —

C C C C C
B B B B
A
A A A
D D D
Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

@)

(b)

(©

(d)

(e)

(f)

(9)

Fig. 4-5. Memory allocation changes as processes come into
memory and leave it. The shaded regions are unused memory.

- Room for growth

B ¢ Actually in use

» Room for growth

A r Actually in use

Operating
system

(@)

A-Program

Operating
system

(b)

} Room for growth

} Room for growth

Fig. 4-6. (@) Allocating space for a growing data segment.
(b) Allocating space for a growing stack and a growing data seg-

ment.

IIAII / IIIBII ICII I/IIIIDII IEI /%/z:

[,

11111000 P05 H|5]|3 P|8|6| 4P |14] 4| —
11111111)
11001111 (

H 18] 2 Pl20| 6 P|26] 3| 4| H|[29] 3| X
11111000 / ? \ ?
T T Hole Starts Length Process

at 18 2

(b) ©

Fig. 4-7. (@) A part of memory with five processes and three holes.
The tick marks show the memory allocation units. The shaded
regions (O in the bitmap) are free. (b) The corresponding bitmap.
(c) The sameinformation asalist.

Before X terminates After X terminates

@l A | x| B becomes AV s
o | A | x becomes NN/
© V) x | B becomes [/ B
& VI x V) becomes [

Fig. 4-8. Four neighbor combinations for the terminating process,
X.

The CPU sends virtual
addresses to the MMU

CPU
package
CPU |—
/ Memory Disk
_ management Memory controller
ull unit

A 1.

The MMU sends physical
addresses to the memory

Fig. 4-9. The position and function of the MMU. Here the MMU
Is shown as being a part of the CPU chip because it commonly is
nowadays. However, logically it could be a separate chip and was
in years gone by.

Virtual

address
space
60K-64K X
56K-60K X } Virtual page
52K-56K X
48K-52K X
44K-48K 7
40K-44K X _
36K-40K | 5 mﬁf@'
32K-36K X address
28K-32K X 28K-32K
24K-28K X 24K-28K
20K-24K 3 20K-24K
16K-20K 4 16K-20K
12K-16K 0 12K-16K
8K-12K 6 8K-12K
4K-8K 1 4K-8K
OK-4K [2 }\OK-4K
Page frame

Fig. 4-10. The relation between virtual addresses and physical
memory addresses is given by the page table.

1|1]0|0]|0 o[ojofo|0]0 0|0
A .
151 000 | O
14| 000 | O
13| 000 | O
12| 000 | O
111 111 1
10| 000 | O
9(101 1 Loobit off
-bit offset
Page 81000 0 copied directly
table 71 000 |0 from input
6| 000 0 to output
5(011 1
4(100 1
3| 000 1
2| 110 1 110
1| 001 1 5 J
_—Presen
0] 010 1 absent bit
Virtual page = 2 is used
as an index into the
page table
0[o]1{0|0]|0 o|o0f0|0Of0O]0 0|0

Outgoing
physical
address
(24580)

Incoming
virtual
address
(8196)

Fig. 4-11. The internal operation of the MMU with 16 4-KB

pages.

Second-leve
page tables

Page
table for
the top
4M of
memory

R

Top-level
page table

1023 /

(C
)
<
2J
(¢
)J
(¢

Bits 10 10 12
PT1 | PT2 | Offset

(@)

N

1023

)J
C

To
pages

N

(b)

Fig. 4-12. (a) A 32-bit address with two page table fields.
(b) Two-level page tables.

Caching

disabled Modified

-

Present/absent

/

\

)

Page frame number

3

\

Referenced Protection

Fig. 4-13. A typical page table entry.

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

Fig. 4-14. A TLB to speed up paging.

Traditional page
table with an entry
for each of the 252
pages

252 ———]

~N— ~N

256-MB physical
memory has 216
4-KB page frames Hash table

16 - 16 1 [l { H |
2 1@ 2 1’4_’ + I

~ ~> ~ ~>

= . =

1 1 1
Indexed Indexed / \
by virtual by hash on Virtual Page

page virtual page page frame

Fig. 4-15. Comparison of atraditional page table with an inverted
page table.

Page loaded first

Most recently
\ 0 3 7 8 12 14 15 18

Ve loaded page

A is treated like a
e newly loaded page

(b)

Fig. 4-16. Operation of second chance. (@) Pages sorted in FIFO
order. (b) Page list if a page fault occurs at time 20 and A hasits R
bit set. The numbers above the pages are their loading times.

When a page fault occurs,
the page the hand is
J D pointing to is inspected.

The action taken depends
on the R bit:
R = 0: Evict the page
R = 1: Clear R and advance hand

Fig. 4-17. The clock page replacement algorithm.

Page Page Page
0 1 2 3
0(O0|O

Page

Page

3
1

ojofofo

11000

0[0|0

0jo0f0fo

1

1
1
1

0|0

110

1
1

00|00

ojofofo
ojofofo

1100|000

2(0(0|0]O0

3([0(0|0]O0

(e)

(d)

©

(b)

@)

0Ojofofo

0)j]0f0f0O

0lofo]o0

1

0lo0|oO

ojofofo

1

0O

0[o0|o

0[lo0fo0]o0

1

0

@

(h)

()]

()

Fig. 4-18. LRU using a matrix when pages are referenced in the

order 0, 1,2,3,2,1,0, 3, 2, 3.

R bits for i R bits for i R bits for i R bits for i R bits for
pages 0-5, | pages 0-5, | pages 0-5, | pages 0-5, | pages 0-5,
clock tick 0 i clock tick 1 i clock tick 2 i clock tick 3 i clock tick 4

|1 of1]of1 1| 3|1 1|olo]1 o| 3|1 1]ol1]o 1| 3|1 olofo]1 0| 3|o 1]1/ofo 0|
| | | |
page | | | |
| | | |

o 10000000 |!| 11000000 || 11100000 | ! | 11110000 |i | o1111000 |
| | | |

1 | 00000000 | i | 10000000 | i | 11000000 | i | 01100000 | i | 10110000 |
| | | |

2 | 10000000 | % | 01000000 | % | 00100000 | % | 00100000 | % | 10001000 |
| | | |

3 | 00000000 | i | 00000000 | i | 10000000 | i | 01000000 | i | 00100000 |
| | | |

4| 10000000 | % | 11000000 | % | 01100000 | % | 10110000 | % | 01011000 |

5 | 10000000 | | 01000000 | | 10100000 | | 01010000 | | 00101000 |

@ | () | (c) | (d) | (e)

Fig. 4-19. The aging algorithm simulates LRU in software.
Shown are six pages for five clock ticks. The five clock ticks are

represented by (@) to (e).

w(k,t)

Fig. 4-20. The working set is the set of pages used by the k most
recent memory references. The function w(k, t) is the size of the
working set at timet.

2204 Current virtual time

Information about{ _~ R (Referenced) bit
one page 2084 | 11
2003 |1
A
Time of lastuse ——>-1080 _[1] | scan all pages examining R bit:

if(R==1)
set time of last use to current virtual time

[N
N
[
w
o

Page referenced
during this tick

)

if (R==0and age > 1)
remove this page

o
N =
I
II—‘

2020 [T
2032 1 if (R ==0and age < 1)
dPage n:)ht_ retfelr(enced —a remember the smallest time
uring this tic 50 1o
Page table

Fig. 4-21. The working set algorithm.

2204 | Current virtual time

1620]0

Fig. 4-22. Operation of the WSClock agorithm. (a) and (b) give

R bit

20841 20321
2003[1 \ 2020]1
1980 [1 2014[1

1213]0 1
Time of
last use
(@
1620]0
20841 2032[1
2003]1 2020]1
1980 [1 2014]0
1213]0
(c)

1620]0
20841 2032]1
2003]1 2020]1
1980 [1 2014]0
1213]0
(b)
1620]0
20841 2032[1
2003]1 / 2020]1
1980 [1 2014]0
2204[1 |
New page
(d)

an example of what happenswhen R=1. (c) and (d) give an
example of R=0.

Algorithm

Comment

Optimal

Not implementable, but useful as a benchmark

NRU (Not Recently Used)

Very crude

FIFO (First-In, First-Out)

Might throw out important pages

Second chance

Big improvement over FIFO

Clock

Realistic

LRU (Least Recently Used)

Excellent, but difficult to implement exactly

NFU (Not Frequently Used)

Fairly crude approximation to LRU

Aging

Efficient algorithm that approximates LRU well

Working set

Somewhat expensive to implement

WSClock

Good efficient algorithm

Fig. 4-23. Page replacement algorithms discussed in the text.

All pages frames initially empty

0 1.2 3 01 4 01 2 3 4
Youngest page of112(|3|10|1]14|4|4|12|3]3
oOj1|12|3|0f1]1(1]14]|2]2
Oldest page 01112|3[0|]0]0]1]4]|4
P PP PP PP P P 9 Page faults
(a)
012 3 01 4 01 2 3 4
Youngest page 01112|3|3]|]3|4]0]112]|3]|4
oj112|2|2(3|4|0]1]|2]3
Oldest page o111 {2|3]4]1]0|1]2
ojojof112(314|0]}1
P P P P P P P P P P 10Page faults

(b)

Fig. 4-24. Belady’ s anomaly. (a) FIFO with three page frames.
(b) FIFO with four page frames. The P’s show which page refer-
ences cause page faults.

Referencestring 0 2 1 3 5 4 6 3 7 4 7 3 355 3111713241
012|1(3|5|14|6(3]|7|4|7|3|3|5|5]|3|1|1|1]7]|1(|3(|4]1
O(211|3|5|4|6|3|7|4|7|7|[3|[3|5]|3|3|3|1]|7]|1|3]|4
O|2|1|3|5|4|6|3|3|4|4|7|7|7|5|[5|[5]|3|3|7]1]3
0l2|1|3|5|4|6|6|6|6|4]4|4|7|7]|7|5|5|5|7]|7
Oj2|1|1|[5|5|5]|5|5|6|6|6|4|4|4|4|4]|4]|5]5
Of22f1|2|2)1]|1|2|1|1|6|6|6|6|6]|6]|6]|6
oljof|2)2)122|2]|2|12|2|2]|2]|2|2]|2]|2]|2]|2
ofojoJoJofo|jOjO|OfO|O|JO|OfO]O]O

Page faults PPPPPPP P P P P
Distance string o o o o o o o 4 o 4 2 3 1 5 1 2 6 1 1 4 2 3 5 3

Fig. 4-25. The state of the memory array, M, after each item in the
reference string is processed. The distance string will be discussed
in the next section.

P(d) /\' P(d)

1 d n 1 d n
() (b)

Fig. 4-26. Probability density functions for two hypothetical
distance strings.

times
1 occurs in

distance strin
C,= 4 rd g
C,=2
C;=1
C,= 4

times

05 =2 6 occurs in

distance string
c-2 |~
c.=1
c.,=8

F,= 19
F,= 17
F,= 16
F,= 12
F.= 10
Fg= 10
F,= 8
F_=8
(b)

~—C,+C,+C,+ ... +C,
~—C,+C,+Cy+ ... +C,

~—C,+Cg+Cy+ ... +C_

-«—— # of page faults with 5 frames

Fig. 4-27. Computation of the page fault rate from the distance
string. (@) The C vector. (b) F vector.

>
Q
)

AO 10 AO AO
Al 7 Al Al
A2 5 A2 A2
A3 4 A3 A3
Al 6 A4 A4
A5 3 A5
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
C1 3 C1 C1
C2 5 C2 C2
C3 6 C3 C3

(@) (b) (€)

Fig. 4-28. Local versus global page replacement. (a) Original con-
figuration. (b) Local page replacement. (c) Global page replace-
ment.

Page faults/sec

Number of page frames assigned

Fig. 4-29. Page fault rate as a function of the number of page
frames assigned.

Single address

space
232

Data <

Program {
0

@)

Program {
0

| space

D space

} Unused page

~ Data

(b)

Fig. 4-30. (a) One address space. (b) Separate | and D spaces.

[111

Process

table

Program Data 1 Data 2
L
VT
Page tables

Fig. 4-31. Two processes sharing the same program sharing its
page table.

1000
1002

1004

MOVE.L #6(A1), 2(A0)

~<«———16 Bits ——>

MOVE

6

2

} Opcode
} First operand

} Second operand

Fig. 4-32. Aninstruction causing a page fault.

Main memory Disk Main memory Disk

/\
Pages Pages N
0 3 Swap area 0 3 Swap area
4 6 4 6
Page Page
table table
Disk

@ (b)

Fig. 4-33. (a) Paging to a static swap area. (b) Backing up pages
dynamically.

User
space

Kernel
space

Fig. 4-34. Page fault handling with an external pager.

Alg

3. Request page

Main memory

/\

User
External
process bager 4. Page
2. Needed arrives
page
1. Page ¢ 5. Here
fault is page

Fault
handler

6. Map
page in

Disk

Address space
allocated to the
parse tree

Virtual address space

Call stack *

Parse tree

Constant table *

Source text *

Symbol table

} Free

Space currently being
used by the parse tree

Symbol table has
bumped into the
source text table

Fig. 4-35. In aone-dimensional address space with growing tables,
one table may bump into another.

20K

16K — 16K
12K 12K 12K — 12K
Symbol
table
8K |- 8K |- 8K |~ Parse 8K |~
tree
Source Call
text stack
4K - 4K 4K 4K
Constants
0K oK 0K 0K oK
Segment Segment Segment Segment Segment
0 1 2 3 4

Fig. 4-36. A segmented memory allows each table to grow or
shrink independently of the other tables.

Consideration Paging Segmentation
Need the programmer be aware No Yes
that this technique is being used?
How many linear address 1 Many
spaces are there?
Can the total address space Yes Yes
exceed the size of physical
memory?
Can procedures and data be No Yes
distinguished and separately
protected?
Can tables whose size fluctuates No Yes
be accommodated easily?
Is sharing of procedures No Yes

between users facilitated?

Why was this technique
invented?

To get a large
linear address
space without
having to buy
more physical
memory

To allow programs
and data to be broken
up into logically
independent address
spaces and to aid
sharing and
protection

Fig. 4-37. Comparison of paging and segmentation.

Segment 4 Segment 4 (3K) (3K
(7K) (7K) Segment 5 Segment 5 (10K)
(4K) (4K)
(4K)
Segment 3 Segment 3 Segment 3 S 5
(8K) (8K) (8K) Segment 6 egmen
(4K) (4K)
Segment 6
Segment 2 Segment 2 Segment 2 Segment 2 (4K)
(5K) (5K) (5K) (5K)
Segment 2
3K 3K 3K 5K
Segment 1 K (3K) (3K) (5K)
(8K) Segment 7 Segment 7 Segment 7 Segment 7
(5K) (5K) (5K) (5K)
Segment O Segment O Segment 0 Segment 0 Segment O
(4K) (4K) (4K) (4K) (4K)

@)

(b)

(©)

(d)

(e)

Fig. 4-38. (a)-(d) Development of checkerboarding. (€) Removal

of the checkerboarding by compaction.

—~——36 bits———

l l Page 2 entry

Page 1 entry

Segment 6 descriptor Page 0 entry
Segment 5 descriptor Page table for segment 3
Segment 4 descriptor
Segment 3 descriptor l l
Segment 2 descriptor T T
Segment 1 descriptor Page 2 entry
Segment 0 descriptor Page 1 entry
Descriptor segment Page O entry

Page table for segment 1

(a)
18 9 111 3 3
Main memory address Segment length
of the page table (in pages)
) \ A A

Page size:
0 = 1024 words
1 =64 words

0 = segment is paged
1 = segment is not paged

Miscellaneous bits

Protection bits

(b)

Fig. 4-39. The MULTICS virtual memory. (a) The descriptor seg-
ment points to the page tables. (b) A segment descriptor. The
numbers are the field lengths.

Address within
the segment

A

Segment number

18

Page Offset within
number the page
6 10

Fig. 4-40. A 34-bit MULTICS virtual address.

MULTICS virtual address

Segment number

Descriptor
Segment
number Descriptor
segment

Fig. 4-41. Conversion of atwo-part MULTICS address into amain

memory address.

Page
number

Page frame

Page
table

Comparison Is this

field entry
. . . used?
Segment Virtual Page
number page frame Protection Age i
4 1 7 Read/write 13 |1
6 0 2 Read only 10 | 1
12 3 1 Read/write 2 1
0
2 1 0 Execute only 7 1
2 2 12 Execute only 9 1
\\/—v

Fig. 4-42. A simplified version of the MULTICS TLB. The
existence of two page sizes makes the actual TLB
more complicated.

Bits 13 1 2

Index

/N

0=GDT/1=LDT Privilege level (0-3)

Fig. 4-43. A Pentium selector.

0: 16-Bit segment [0: Segment is absent from memory

1: 32-Bit segment | 1: Segment is present in memory
—— Privilege level (0-3)

0: Li is in bytes 0: System

1: Liis in pages 1: Application

+— Segment type and protection

Base24-31 |G|D[of] iMe |P|DPL|S| Type Base 16-23 4
Base 0-15 Limit 0-15 0
32 Bits Relative

address

Fig. 4-44. Pentium code segment descriptor. Data segments differ
dightly.

Selector

Descriptor

Base address

Offset

Limit

Other fields

B\

Y

32-Bit linear address

Fig. 4-45. Conversion of a (selector, offset) pair to alinear

address.

Linear address

Bits 10 10 12
Dir Page Offset
@)
Page directory Page table Page frame
T ; r J~ vl Word t|~ J R
selected

1024
Entries T

Dir

Directory entry

points to
page table

Page

Page table

/

entry points

to word

(b)

v

Offset

Fig. 4-46. Mapping of alinear address onto a physical address.

er progra
us Jrams Typical uses of

the levels

Level

Fig. 4-47. Protection on the Pentium.

