1

INTRODUCTION

1.1 WHAT ISAN OPERATING SYSTEM?
1.2 HISTORY OF OPERATING SYSTEMS
1.3 THE OPERATING SYSTEM 200

1.4 COMPUTER HARDWARE REVIEW

1.5 OPERATING SYSTEM CONCEPTS

16 SYSTEM CALLS

1.7 OPERATING SYSTEM STRUCTURE

1.8 RESEARCH ON OPERATING SYSTEMS
19 OUTLINE OF THE REST OF THISBOOK
1.10 METRIC UNITS

1.11 SUMMARY

Banking Airline Web

system | reservation | browser Application programs

: : Command
Compilers Editors interpreter | | System
programs
Operating system
Machine language
Microarchitecture r Hardware

Physical devices

Fig. 1-1. A computer system consists of hardware, system pro-
grams, and application programs.

System

Tape

drive tape Output
Card tape —\
reader [3([) SIS ol)] Printer
o] 9
= ol ol (ol &)
(N (N (N

1401 7094 1401

(@) (b) (© (d) (e))

Fig. 1-2. An early batch system. (a) Programmers bring cards to
1401. (b) 1401 reads batch of jobs onto tape. (c) Operator carries
input tape to 7094. (d) 7094 does computing. (€) Operator carries
output tape to 1401. (f) 1401 prints output.

) / $END

_~——Data for program
/

/
_~———Fortran program
/

B
/$FORTRAN

$JOB, 10,6610802, MARVIN TANENBAUM L/

Fig. 1-3. Structure of atypical FMSjob.

Job 3
Job 2
Memory
Job 1 partitions
Operating
system

Fig. 1-4. A multiprogramming system with three jobs in memory.

Monitor

Hard
Keyboard dizllgg%e disk drive
3 == 0oooo
: Floppy Hard
Video Keyboard : ;
CPU Memory controller controller cor?tlrsé(ller cor?tlrscl)(ller
Bus

Fig. 1-5. Some of the components of a simple personal computer.

Fetch
unit

Decode
unit

Execute
unit

(@)

Fetch Decode
unit unit

Fetch Decode
unit unit

Execute
unit

Execute
unit

Execute
unit

(b)

Fig. 1-6. (a) A three-stage pipeline. (b) A superscalar CPU.

Typical access time

1 nsec
2 nsec
10 nsec

10 msec

Registers

Cache

Main memory

Magnetic disk

100 sec

Magnetic tape

Typical capacity

<1 KB
1 MB
64-512 MB
5-50 GB

20-100 GB

Fig. 1-7. A typica memory hierarchy. The numbers are very rough

approximations.

—] Read/write head (1 per surface)

Surface 7 S
B
Surface 6 =
Surface 5 = |
B
Surface 4
Surface 3 = ~—
ﬁ) Direction of arm motion
Surface 2 =]

y

Surface 1 >§
Surface 0 =

Fig. 1-8. Structure of adisk drive.

Address

OXFFFFFFFF

Limit —

Base —

User program
and data

User program
and data

Operating
System

(@)

Registers
when

program 2
is running

Registers - Limit-2

when

program 1 User-2 data

is running <— Base-2

Limit-2 —>-

Base-2 ~ User-1 data

Limit-1 User program

Base-1 —> <«— Base-1

Operating
System

(b)

Fig. 1-9. (@) Use of one base-limit pair. The program can access
memory between the base and the limit. (b) Use of two base-limit
pairs. The program code is between Base-1 and Limit-1 whereas
the data are between Base-2 and Limit-2.

Disk drive

—

4 Current instruction

I Next instruction
CPU | 3| Interrupt Disk
controller controller 3. Return
1. Interrupt
L 9t 3 i
1

! \ /
2. Dispatch ~

I
to handler

Interrupt handler 7
@) (b)

Fig. 1-10. (a) The stepsin starting an 1/O device and getting an
interrupt. (b) Interrupt processing involves taking the interrupt,
running the interrupt handler, and returning to the user program.

Cache bus

Level 2 @ CPU

Local bus

Memory bus

=

|

PCl |/ Main
cache bridge \ / memory
ZAN PCI bus
—
I I I
Graphics
SCSI USB I_SA <:> IDE adaptor Available
f bridge disk * PCI slot
@ h . Mon-
itor
Key-
Mouse
board ISA bus
11011 N
]] [oyt
Sound . .
Modem Printer Available
card ISA slot

Fig. 1-11. The structure of alarge Pentium system

(")
SO
02620

Fig. 1-12. A process tree. Process A created two child processes, B
and C. Process B created three child processes, D, E, and F.

Fig. 1-13. (@) A potential deadlock. (b) An actual deadlock.

Root directory

~

Students Faculty
ya -
Robbert Matty ' Leo Prof.Brown Prof.Green Prof.White
Y
/
/ /
/ 7\ # A
Fy I {
Courses Papers Grants Committees
V] J /] \
/ / \
\ 1, 1.
\ 71\ 1\
/
é/ \b g \5 :
Y Y
O O
Csio01 CS105 . z SOSP COST-11

Files

Fig. 1-14. A file system for a university department.

Root Floppy

(@) (b)

Fig. 1-15. (a) Before mounting, the files on drive O are not accessi-
ble. (b) After mounting, they are part of the file hierarchy.

Process Process
Pipe
A B

Fig. 1-16. Two processes connected by a pipe.

Address

OXFFFFFFFF _
Return to caller 1 Librar
Trap to the kernel procegure
5| Put code for read in register read
10,
4
User space < Increment SP 11 "
~ Call read
3| Pushfd User program
2| Push &buffer calling read
1| Push nbytes
6 9
-
(— % 7
Kernel space < Dispatch 7 8 | Syscall
(Operating system) ISP - “| handler
-
0

Fig. 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).

Process management

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

s = execve(name, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file's status information

Directory and file

system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(namel, name?2)

Create a new entry, namez2, pointing to namel

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = umount(special)

Unmount a file system

Miscellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file's protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Fig. 1-18. Some of the major POSIX system calls. The return code

sis—1if an error has occurred.

The return codes are as follows:;

pid isaprocessid, fd isafile descriptor, nis abyte count, position
is an offset within the file, and secondsis the elapsed time. The
parameters are explained in the text.

#define TRUE 1

while (TRUE) { /* repeat forever */
type _prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() '=0) { /* fork off child process */
[* Parent code. */
waitpid(-1, &status, 0); /* wait for child to exit */
} else {

[* Child code. */
execve(command, parameters, 0); /* execute command */

Fig. 1-19. A stripped-down shell. Throughout this book, TRUE is
assumed to be defined as 1.

Address (hex)
FFFF

Stack

Data |

Text

0000

Fig. 1-20. Processes have three segments: text, data, and stack.

lusr/ast lusr/jim
16 | mail 31| bin
81 | games 70 | memo
40 | test 59| f.c.
38 | progl

(@)

lusr/ast /usr/jim
16 | mail 31| bin
81 | games 70 [memo
40 | test 59 | f.c.
70 | note 38 | progl

(b)

Fig. 1-21. (a) Two directories before linking /usr/jim/memo to
ast’ s directory. (b) The same directories after linking.

bin dev lib mnt usr b%
(b)

(@)

Fig. 1-22. (a) File system before the mount. (b) File system after
the mount.

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve

exit ExitProcess Terminate execution

open CreateFile Create a file or open an existing file
close CloseHandle Close a file

read ReadFile Read data from a file
write WriteFile Write data to a file

Iseek SetFilePointer Move the file pointer

stat GetFileAttributesEx | Get various file attributes

mkdir CreateDirectory Create a new directory

rmdir RemoveDirectory Remove an empty directory

link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file

mount | (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetLocalTime Get the current time

Fig. 1-23. The Win32 API calls that roughly correspond to the
UNIX calls of Fig. 1-18.

Main
procedure

Service
procedures

Utility
procedures

Fig. 1-24. A ssimple structuring model for a monolithic system.

Layer

Function

The operator

User programs

Input/output management

Operator-process communication

Memory and drum management

Ol IN WA~

Processor allocation and multiprogramming

Fig. 1-25. Structure of the THE operating system.

Virtual 370s

m

System calls here

Y

I/0 instructions here

CMS

CMS

CMS)

<

— Trap here

Trap here —p)

VM/370

370 Bare hardware

Fig. 1-26. The structure of VM/370 with CMS.

Client Client Process | Terminal File Memory
LRI User mode
process process server server server server
\ - / Kernel mode
Microkernel \ }

Client obtains
service by

sending messages
to server processes

Fig. 1-27. The client-server model.

Machine 1 Machine 2 Machine 3 Machine 4
Client 1 L File server Process server Terminal server
LRCI) Kernel Kernel Kernel Kernel
L\

Message from
client to server

Network

Fig. 1-28. The client-server model in a distributed system.

Exp. | Explicit Prefix | Exp. Explicit Prefix
1078 0.001 milli 108 1,000 | Kilo
107° 0.000001 micro | 10° 1,000,000 | Mega
107° 0.000000001 nano | 10° 1,000,000,000 | Giga
10712 0.000000000001 pico 10%? 1,000,000,000,000 | Tera
107 0.000000000000001 femto | 10'° 1,000,000,000,000,000 | Peta
10718 0.0000000000000000001 atto 108 1,000,000,000,000,000,000 | Exa
10721 0.0000000000000000000001 zepto | 10?% 1,000,000,000,000,000,000,000 | Zetta
10724 0.0000000000000000000000001 | yocto | 10%* [1,000,000,000,000,000,000,000,000 | Yotta

Fig. 1-29. The principal metric prefixes.

