2

PROCESSES AND THREADS

2.1 PROCESSES

2.2 THREADS

2.3 INTERPROCESS COMMUNICATION

24 CLASSICAL IPC PROBLEMS

2.5 SCHEDULING

2.6 RESEARCH ON PROCESSES AND THREADS
2.7 SUMMARY

One program counter
—

q

Four program counters

Process
A switch
B

8

JI—JJT

(@)

B Y

°f

DY

Process
> o O O

Time —=

(©

Fig. 2-1. (@) Multiprogramming of four programs. (b) Conceptual
model of four independent, sequential processes. (c) Only one
program is active at once.

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

Fig. 2-2. A process can be in running, blocked, or ready state.
Transitions between these states are as shown.

Processes

Scheduler

Fig. 2-3. The lowest layer of a process-structured operating system
handles interrupts and scheduling. Above that layer are sequential
Processes.

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started

CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

. 2-4. Some of the fields of atypical process table entry.

. Hardware stacks program counter, etc.

. Hardware loads new program counter from interrupt vector.

. Assembly language procedure saves registers.

. Assembly language procedure sets up new stack.

. Cinterrupt service runs (typically reads and buffers input).

. Scheduler decides which process is to run next.

. C procedure returns to the assembly code.

. Assembly language procedure starts up new current process.

co~NO UG WNE

Fig. 2-5. Skeleton of what the lowest level of the operating system
does when an interrupt occurs.

Process 1 Process 1 Process 1 Process

\\ | | l
User {
space
Thread Thread

Kernel K |
space Kernel erne

(a) (b)

Fig. 2-6. (@) Three processes each with one thread. (b) One process
with three threads.

Per process items Per thread items

Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

Fig. 2-7. Thefirst column lists some items shared by all threads in
aprocess. The second one lists some items private to each thread.

Thread 2

Thread 1 \ Thread 3
A\ /

|_—~ Process

Thread 3's stack

i

Kernel

Fig. 2-8. Each thread has its own stack.

Four score and seven
years ago, our fahers
brougnt forth upon this
continent anew nation:

in a great civil war
testing. whether that

nation, o any nation
0 conceived and o
dedicated, can long
endure. We are met on
a great batlefield of
that war.

We have come to
dedicate a portion of
that field as a final
resting place for those
who here gave their

lives that this. nation|
might live. It
altogether fitting and|
proper that we should]
dothis

But,in alarger sense,
we cannot dedicate, we|
cannot consecrate we|
cannot hallow _this
ground. The brave|
men, living and dead,

who struggled _here
have consecrated it far
above our poor power
to add or detract. The|
world will little note,
nor long remember
what we say here, but
never forge|
wha they did here.

Itis for usthe living,
rather, to be dedicated

here to the unfirished
work which they who
fought here have thus
far <0 nobly advanced.
Itis rather for usto be
here dedicated to the

0 that cause for which

they gave the last full
measure of devotion,
that we here highly

an tha government of
the people by the
eople, for the people

L

J

Y

e

Keyboard

Kernel

Fig. 2-9. A word processor with three threads.

Disk

Web server process

\

Dispatcher thread

> Worker thread
—tS

Web page cache

Kernel

Network
connection

Fig. 2-10. A multithreaded Web server.

7

User
space

Kernel
space

while (TRUE) { while (TRUE) {

get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page))

read_page_from_disk(&buf, &page);
return_page(&page);
}
(a) (b)

Fig. 2-11. A rough outline of the code for Fig. 2-10. (a) Dispatcher
thread. (b) Worker thread.

Fig.

Model

Characteristics

Threads

Parallelism, blocking system calls

Single-threaded process

No parallelism, blocking system calls

Finite-state machine

Parallelism, nonblocking system calls, interrupts

2-12. Three ways to construct a server.

Process Thread Process Thread

__/ _/

- \ \

HIEHAIRN

-

Kernel
space{ /Kernel — Kernel /E %

/ \\ / !
Run-time Thread Process Process Thread
system table table table table

Fig. 2-13. () A user-level threads package. (b) A threads package
managed by the kernel.

Multiple user threads
on a kernel thread

_

> User
space

Kernel
Kernel ~— Kernel thread space

Fig. 2-14. Multiplexing user-level threads onto kernel-level
threads.

Pop-up thread
Process created to handle

o incoming message
\ Existing thread

\

Incoming message

Network

(@) (b)

Fig. 2-15. Creation of a new thread when a message arrives.
(a) Before the message arrives. (b) After the message arrives.

Thread 1 Thread 2

Access (errno set)

%

-<— Time

|

Open (errno overwritten)

§

;

Errno inspected

Fig. 2-16. Conflicts between threads over the use of a global vari-
able.

Thread 1's
code

Thread 2's
code

Thread 1's
stack ~—

Thread 2's
/ stack

Thread 1's
globals

Thread 2's
globals

Fig. 2-17. Threads can have private global variables.

Spooler

out=4

directory
4 abc
6 prog.n
7

in=7

Process B

Fig. 2-18. Two processes want to access shared memory at the

same time.

A enters critical region

/ A leaves critical region

ProcessA ——

[
|
|
I B attempts to B enters B Ieaves_
| enter critical | critical region critical region
region
| | | |
| | |
PrOC(—Z‘SS B 1 O | }
AN | 1
| | v | |
1 1 B blocked 1 !
T T, Ty T,

Fig. 2-19. Mutual exclusion using critical regions.

while (TRUE) { while (TRUE) {

while (turn != 0) /% loop */ ; while (turn 1= 1) /% loop */ ;
critical _region(); critical _region();
turn = 1; turn = 0;
noncritical _region(); noncritical _region();
} }
(a) (b)

Fig. 2-20. A proposed solution to the critical region problem.
(@) Process 0. (b) Process 1. In both cases, be sure to note the
semicolons terminating the while statements.

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */
int turn; [+ whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE) */
void enter_region(int process); /* processis 0 or 1 */
{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */ ;
}
void leave_region(int process) /x process: who is leaving */
{
interested[process] = FALSE; /* indicate departure from critical region */
}

Fig. 2-21. Peterson’s solution for achieving mutual exclusion.

enter_region:
TSL REGISTER,LOCK
CMP REGISTER,#0
JNE enter_region
RET

leave _region:
MOVE LOCK,#0
RET

| copy lock to register and set lock to 1

| was lock zero?

| if it was non zero, lock was set, so loop
| return to caller; critical region entered

| store a 0 in lock
| return to caller

Fig. 2-22. Entering and leaving a critical region using the TSL

instruction.

#define N 100 /* number of slots in the buffer %/
int count = 0; /* number of items in the buffer */

void producer(void)

{ . .
int item;
while (TRUE) { /* repeat forever */
item = produce_item(); [* generate next item */
if (count == N) sleep(); % if buffer is full, go to sleep */
insert_item(item); [* put item in buffer %/
count = count + 1; /* increment count of items in buffer */
if (count == 1) wakeup(consumer); /*x was buffer empty? */
}
}
void consumer(void)
{ . .
int item;
while (TRUE) { [* repeat forever /
if (count == 0) sleep(); /% if buffer is empty, got to sleep */
item = remove _item(); /* take item out of buffer %/
count = count — 1; [* decrement count of items in buffer */
if (count == N — 1) wakeup(producer); /* was buffer full? %/
consume _item(item); [* print item */
}
}

Fig. 2-23. The producer-consumer problem with afatal race condi-
tion.

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

/* number of slots in the buffer %/

/* semaphores are a special kind of int */
/* controls access to critical region */

[* counts empty buffer slots %/

/* counts full buffer slots */

void producer(void)

{

int item;

while (TRUE) { /* TRUE is the constant 1 /

item = produce_item();
down(&empty);
down(&mutex);
insert_item(item);
up(&mutex);

up(&full);

/* generate something to put in buffer */
/* decrement empty count */

/* enter critical region */

[* put new item in buffer */

[* leave critical region */

/* increment count of full slots */

void consumer(void)

{

int item;

while (TRUE) { /* infinite loop */

down(&full); /* decrement full count */
down(&mutex); [* enter critical region */

item = remove_item(); /* take item from buffer x/
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */

consume _item(item);

/* do something with the item */

Fig. 2-24. The producer-consumer problem using semaphores.

mutex_lock:
TSL REGISTER,MUTEX
CMP REGISTER,#0
JZE ok
CALL thread_yield
JMP mutex_lock

ok: RET

mutex_unlock:
MOVE MUTEX,#0
RET

| copy mutex to register and set mutex to 1

| was mutex zero?

| if it was zero, mutex was unlocked, so return
| mutex is busy; schedule another thread

| try again later

| return to caller; critical region entered

| store a 0 in mutex
| return to caller

Fig. 2-25. Implementation of mutex_Ilock and mutex_unlock.

monitor example
integer i;
condition c;

procedure producer();

énd;

procedure consumer ();

end:;
end monitor:

Fig. 2-26. A monitor.

monitor Producer Consumer
condition full, empty;
integer count;

procedur e insert(item: integer);
begin

if count = N then wait(full);

insert_item(item);

count := count + 1;

if count = 1 then signal (empty)
end;

function remove: integer;
begin
if count = 0 then wait(empty);
remove = remove_item;
count ;= count — 1,
if count = N — 1 then signal (full)
end;

count :=0;
end monitor;

procedure producer;
begin
while true do
begin
item = produce_item;
Producer Consumer .insert(item)
end
end;

procedur e consumer;
begin
while true do
begin
item = Producer Consumer.remove;
consume_item(item)
end
end;

Fig. 2-27. An outline of the producer-consumer problem with
monitors. Only one monitor procedure at atimeisactive. The
buffer has N dlots.

public class ProducerConsumer {
static final int N = 100; /I constant giving the buffer size
static producer p = new producer(); // instantiate a new producer thread
static consumer ¢ = new consumer(); // instantiate a new consumer thread
static our_monitor mon = new our_monitor(); // instantiate a new monitor

public static void main(String args[]) {
p.start(); // start the producer thread
c.start(); // start the consumer thread

}

static class producer extends Thread {
public void run() {// run method contains the thread code
int item;
while (true) { // producer loop
item = produce_item();
mon.insert(item);

}
}

private int produce_item() { ...} // actually produce

}

static class consumer extends Thread {
public void run() {run method contains the thread code
int item;
while (true) { // consumer loop
item = mon.remove();
consume_item (item);

}
}

private void consume_item(int item) { ... } /[actually consume

}

static class our_monitor { // this is a monitor
private int buffer[] = new int[N];
private int count =0, lo = 0, hi = 0; // counters and indices

public synchronized void insert(int val) {
if (count == N) go_to_sleep(); //if the buffer is full, go to sleep
buffer [hi] = val; // insert an item into the buffer

hi = (hi + 1) % N; /I slot to place next item in
count = count + 1; /I one more item in the buffer now
if (count == 1) notify(); /I if consumer was sleeping, wake it up

public synchronized int remove() {
int val;
if (count == 0) go_to_sleep(); //'if the buffer is empty, go to sleep
val = buffer [lo]; // fetch an item from the buffer
lo=(lo+1)%N; /I slot to fetch next item from
count = count - 1; /l one few items in the buffer
if (count == N - 1) notify(); // if producer was sleeping, wake it up
return val;

}
private void go_to_sleep() { try{wait();} catch(InterruptedException exc) {};}

}

Fig. 2-28. A solution to the producer-consumer problem in Java.

#define N 100 /* number of slots in the buffer %/

void producer(void)

{ . .
int item;
message m; /* message buffer */
while (TRUE) {
item = produce _item(); /* generate something to put in buffer */
receive(consumer, &m); [* wait for an empty to arrive */
build_message(&m, item); [* construct a message to send */
send(consumer, &m); /* send item to consumer */
}
}
void consumer(void)
{ . . .
int item, i;
message m;
for (i= 0; i < N; i++) send(producer, &m); /* send N empties */
while (TRUE) {
receive(producer, &m); /* get message containing item */
item = extract_item(&m); [* extract item from message */
send(producer, &m); /* send back empty reply */
consume_item(item); /* do something with the item */
}
}

Fig. 2-29. The producer-consumer problem with N messages.

/@) @ @
Process a:) EI:) E
© e g ©-]& Zl©
................ ©® ®

Time —— Time —— Time ——

(@ (b) (c)

Fig. 2-30. Use of abarrier. (a) Processes approaching a barrier.
(b) All processes but one blocked at the barrier. (c) When the last
process arrives at the barrier, all of them are let through.

my

Fig. 2-31. Lunch time in the Philosophy Department.

#define N 5 /* number of philosophers */
void philosopher(int i) /* i: philosopher number, from O to 4 */

while (TRUE) {

think(); /* philosopher is thinking */

take _fork(i); /* take left fork x/

take _fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */

put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

Fig. 2-32. A nonsolution to the dining philosophers problem.

#define N 5 /* number of philosophers */

#define LEFT (i+N-1)%N /x number of i's left neighbor */
#define RIGHT (i+1)%N /* number of i’s right neighbor */
#define THINKING O /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */
typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; [* array to keep track of everyone’s state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[NJ; [* one semaphore per philosopher */
void philosopher(int i) /% i: philosopher number, from 0 to N-1 %/
{
while (TRUE) { [* repeat forever */
think(); /* philosopher is thinking */
take _forks(i); /* acquire two forks or block */
eat(); /* yum-yum, spaghetti */
put_forks(i); /* put both forks back on table */
}
}
void take _forks(int i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); [* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); [* exit critical region */
down(&sli]); /* block if forks were not acquired */
}
void put_forks(i) /% i: philosopher number, from 0 to N-1 %/
{
down(&mutex); [* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); [* exit critical region */
}
void test(i) /* i: philosopher number, from 0 to N-1 */

if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
state[i] = EATING;

up(&sfi]);

Fig. 2-33. A solution to the dining philosophers problem.

typedef int semaphore; [* use your imagination */

semaphore mutex = 1; /* controls access to 'rc’ */
semaphore db = 1; /* controls access to the database */
intrc =0; /* # of processes reading or wanting to */

void reader(void)

{
while (TRUE) { /* repeat forever */
down(&mutex); [* get exclusive access to 'rc’ */
rc=rc+1, /* one reader more now */
if (rc == 1) down(&db); /* if this is the first reader ... x/
up(&mutex); /* release exclusive access to 'rc’ */
read_data_base(); /* access the data */
down(&mutex); [* get exclusive access to 'rc’ */
rc=rc-1; /* one reader fewer now */
if (rc == 0) up(&db); /* if this is the last reader ... */
up(&mutex); /* release exclusive access to 'rc’ */
use_data_read(); /% noncritical region */
}
}
void writer(void)
{
while (TRUE) { [* repeat forever */
think_up_data(); /* noncritical region */
down(&db); [* get exclusive access */
write_data_base(); /* update the data */
up(&db); /* release exclusive access */
}
}

Fig. 2-34. A solution to the readers and writers problem.

Fig. 2-35. The slegping barber.

#define CHAIRS 5
typedef int semaphore;

semaphore customers = 0;
semaphore barbers = 0;
semaphore mutex = 1;

int waiting = 0;

void barber(void)
{
while (TRUE) {

down(&customers);
down(&mutex);
waiting = waiting — 1;
up(&barbers);
up(&mutex);
cut_hair();

void customer(void)
{
down(&mutex);
if (waiting < CHAIRS) {
waiting = waiting + 1;
up(&customers);
up(&mutex);
down(&barbers);
get_haircut();
} else {
up(&mutex);
}

[* # chairs for waiting customers */
/* use your imagination */

/* # of customers waiting for service */

/* # of barbers waiting for customers */

[* for mutual exclusion */

[* customers are waiting (not being cut) */

/* go to sleep if # of customers is 0 */

[* acquire access to 'waiting’ */

/* decrement count of waiting customers */
/* one barber is now ready to cut hair */

/* release 'waiting’ */

/* cut hair (outside critical region) */

/* enter critical region */

/% if there are no free chairs, leave */

/* increment count of waiting customers */
/* wake up barber if necessary */

/* release access to 'waiting’ */

/* go to sleep if # of free barbers is 0 */

/* be seated and be serviced */

/* shop is full; do not wait */

Fig. 2-36. A solution to the slegping barber problem.

(@ | / — — 1
Long CPU burst \

Waiting for I/O

Short CPU burst \
I'I/ i 1 I 1 I
[N]

(o) [(1 {1 I (—1 e | {1 —
Time
B —

Fig. 2-37. Bursts of CPU usage alternate with periods of waiting
for 1/0. (@) A CPU-bound process. (b) An I/O-bound process.

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Fig. 2-38. Some goals of the scheduling algorithm under different
Ccircumstances.

() (b)

Fig. 2-39. An example of shortest job first scheduling. (a) Run-
ning four jobsin the original order. (b) Running them in shortest
job first order.

Arriving

ob input 00000

queue

| v
O [[Iololoo] /——> Memory <>

Admission Memory Disk

scheduler scheduler

Fig. 2-40. Three-level scheduling.

Current Next Current
process process process

N S N\

B F D G A F D G A

@) (b)

Fig. 2-41. Round-robin scheduling. (a) Thelist of runnable
processes. (b) The list of runnable processes after B uses up its
quantum.

Queue Runable processes

headers , A

Priority 4 (Highest priority)
Priority 3

Priority 2

Priority 1 (Lowest priority)

Fig. 2-42. A scheduling algorithm with four priority classes.

Process A Process B Process A Process B
Order in which

threads run \

Y \
2. Runtime 1 2 (3
system
picks a —
thread =] | =
4
Ll. Kernel picks a process 1 Kernel picks a thread E
Possible: Al, A2, A3, A1, A2, A3 Possible: Al, A2, A3, Al, A2, A3
Not possible: Al, B1, A2, B2, A3, B3 Also possible: Al, B1, A2, B2, A3, B3
@) (b)

Fig. 2-43. (a) Possible scheduling of user-level threads with a 50-
msec process quantum and threads that run 5 msec per CPU burst.
(b) Possible scheduling of kernel-level threads with the same

characteristics as (a).

