11

CASE STUDY 2: WINDOWS 2000

11.1 HISTORY OF WINDOWS 2000

11.2 PROGRAMMING WINDOWS 2000

11.3 SYSTEM STRUCTURE

11.4 PROCESSES AND THREADS IN WINDOWS 2000
11.5 MEMORY MANAGEMENT

11.6 INPUT/OUTPUT IN WINDOWS 2000

11.7 THE WINDOWS 2000 FILE SYSTEM

11.8 SECURITY IN WINDOWS 2000

11.9 CACHING IN WINDOWS 2000

11.10 SUMMARY

Item Windows 95/98 Windows NT
Full 32-bit system? No Yes
Security? No Yes
Protected file mappings? No Yes
Private addr space for each MS-DOS prog? | No Yes
Unicode? No Yes
Runs on Intel 80x86 80x86, Alpha, MIPS, ...
Multiprocessor support? No Yes
Re-entrant code inside OS? No Yes
Plug and play? Yes No
Power management? Yes No
FAT-32 file system? Yes Optional
NTFS file system No Yes
Win32 API? Yes Yes
Run all old MS-DOS programs? Yes No
Some critical OS data writable by user? Yes No

Fig. 11-1. Some differences between Windows 98 and Windows
NT.

Version Max RAM | CPUs | Max clients | Cluster size| Optimized for
Professional 4GB 2 10 0 Response time
Server 4 GB 4 Unlimited 0 Throughput
Advanced server 8 GB 8 Unlimited 2 Throughput
Datacenter server 64 GB 32 Unlimited 4 Throughput

Fig. 11-2. The different versions of Windows 2000.

Year

AT&T

BSD

MINIX

Linux

Solaris

Win NT

1976

V6 9K

1979

V7 21K

1980

4.1 38K

1982

Sys Ill 58K

1984

4.2 98K

1986

4.3 179K

1987

SVR3 92K

1.0 13K

1989

SVR4 280K

1991

0.01 10K

1993

Free 1.0 235K

5.3 850K

3.1 6M

1994

4.4 Lite 743K

1.0 165K

3.5 10M

1996

2.0 470K

40 16M

1997

2.0 62K

5.6 1.4M

1999

2.2 1M

2000

Free 4.0 1.4M

5.8 2.0M

2000 29M

Fig. 11-3. A comparison of some operating system sizes. The first
string in each box is the version; the second is the size measured in
lines of source code, where K = 1000 and M = 1,000,000. Com-
parisons within a column have real meaning; comparisons across

columns do not, as discussed in the text.

Win32

application
program

Win32 Application Programming Interface

Win32s

Windows 3.x

Windows

95/98/Me Windows NT

Window 2000

Fig. 11-4. The Win32 API alows programs to run on almost all
versions of Windows,

Key

Description

HKEY_LOCAL_MACHINE
HARDWARE

Properties of the hardware and software
Hardware description and mapping of hardware to drivers

SAM Security and account information for users
SECURITY System-wide security policies
SOFTWARE Generic information about installed application programs
SYSTEM Information for booting the system
HKEY_USERS Information about the users; one subkey per user
USER-AST-ID User AST's profile
AppEvents Which sound to make when (incoming email/fax, error, etc.)
Console Command prompt settings (colors, fonts, history, etc.)

Control Panel
Environment
Keyboard Layout
Printers

Software

Desktop appearance, screensaver, mouse sensitivity, etc.
Environment variables

Which keyboard: 102-key US, AZERTY, Dvorak, etc.
Information about installed printers

User preferences for Microsoft and third party software

HKEY_PERFORMANCE _DATA

Hundreds of counters monitoring system performance

HKEY_CLASSES_ROOT

Link to HKEY _LOCAL_MACHINE\SOFTWARE\CLASSES

HKEY_CURRENT_CONFIG

Link to the current hardware profile

HKEY_CURRENT_USER

Link to the current user profile

Fig. 11-5. The root keys registry keys and selected subkeys. The
capitalization has no meaning but follows the Microsoft practice

here.

Win32 API function

Description
RegCreateKeyEx Create a new registry key
RegDeleteKey Delete a registry key
RegOpenKeyEx Open a key to get a handle to it
RegEnumKeyEx Enumerate the subkeys subordinate to the key of the handle
RegQueryValueEx Look up the data for a value within a key

Fig. 11-6. Some of the Win32 API calls for using the registry

| POSIX program | | Win32 program | | OS/2 program |
Service * * *
process | POSIX subsystem |—>| Win32 subsystem |<—| 0S/2 subsystem |

Y Y Y Y
| System interface (NT DLL.DLL) |

System services

N

I
/O mgr Object |Process [Memory|Security| Cache | PnP | Power | Config| LPC | Win32

mgr mgr mgr | mgr mgr | mgr | mgr [mgr [mgr GDI

| Video
Kerne driver

Hardware Abstraction layer (HAL)

Hardware

-—— Kernel mode —> <«— User mode

Fig. 11-7. The structure of Windows 2000 (slightly simplified).
The shaded areais the executive. The boxesindicated by D are
device drivers. The service processes are system daemons.

Device Device Spin

registers addresses Interrupts DMA Timers locks BIOS
[[[[
[RAML		[
A	e	
—		

Hardware abstraction layer

Fig. 11-8. Some of the hardware functions the HAL manages.

~ -
Object name
Directory in which the object lives
Object Security information (which can use object)
header < Quota charges (cost to use the object)
List of processes with handles
Reference counts
_|__Pointer to the type object
=
Object . -
data Object-specific data
_

Fig. 11-9. The structure of an object.

Y

Type name

Access types

Access rights

Quota charges

Synchronizable?

Pageable

Open method

Close method
Delete method
Query name method
Parse method
Security method

Type Description
Process User process
Thread Thread within a process
Semaphore Counting semaphore used for interprocess synchronization
Mutex Binary semaphore used to enter a critical region
Event Synchronization object with persistent state (signaled/not)
Port Mechanism for interprocess message passing
Timer Object allowing a thread to sleep for a fixed time interval
Queue Object used for completion notification on asynchronous 1/0O
Open file Object associated with an open file
Access token Security descriptor for some object
Profile Data structure used for profiling CPU usage
Section Structure used for mapping files onto virtual address space
Key Registry key
Object directory | Directory for grouping objects within the object manager
Symbolic link Pointer to another object by name
Device I/O device object
Device driver Each loaded device driver has its own object

Fig. 11-10. Some common executive object types managed by
object manager.

Handle
table for

process A_/f

1010
1011

0101

-

Fig. 11-11. The relationship between handle tables, objects, and

type objects.

Thread

Handle
table for
process B

1110

-

1111

Directory

Contents

?7? Starting place for looking up MS-DOS devices like C:
Device All discovered 1/0O devices

Driver Objects corresponding to each loaded device driver
ObjectTypes The type objects shown in Fig. 11-11

Windows Objects for sending messages to all the windows
BaseNamedObjs| User-created objects such as semaphores, mutexes, etc.
Arcname Partition names discovered by the boot loader

NLS National language support objects

FileSystem File system driver objects and file system recognizer objects
Security Objects belonging to the security system

KnownDLLs Key shared libraries that are opened early and held open

Fig. 11-12. Some typical directories in the object name space.

User

A/process

Gdi32.dll —>D —

User32.dll —»D -

Enviroment
subsystem Kernel32.dll —>
process
(csrss.exe) 2b

User < 2
space
3b
Y
System interface (ntdll.dll)
4b 3a
Y
Kernel -
space { Operating system

Fig. 11-13. Various routes taken to implement Win32 API func-
tion calls.

File Mode | Fcns Contents
hal.dll Kernel 95 | Low-level hardware management, e.g., port I/O
ntoskrnl.exe | Kernel | 1209 | Windows 2000 operating system (kernel + executive)
win32k.sys | Kernel - Many system calls including most of the graphics
ntdll.dll User 1179 | Dispatcher from user mode to kernel mode
CSrss.exe User 0 | Win32 environment subsystem process
kernel32.dll | User 823 | Most of the core (nongraphics) system calls
gdi32.dll User 543 | Font, text, color, brush, pen, bitmap, palette, drawing, etc. calls
user32.dll User 695 | Window, icon, menu, cursor, dialog, clipboard, etc. calls
advapi32.dll | User 557 | Security, cryptography, registry, management calls

Fig. 11-14. Some key Windows 2000 files, the mode they run in,
the number of exported function calls, and the main contents of
each file. The callsin win32k.sys are not formally exported since
win32k.sysis not called directly.

Name Description

Job Collection of processes that share quotas and limits
Process| Container for holding resources

Thread | Entity scheduled by the kernel

Fiber Lightweight thread managed entirely in user space

Fig. 11-15. Basic concepts used for CPU and resource manage-
ment.

/ Process \

User
stack

Process _>§ |:| D«— Kernel mode thread stack—>|:| |:|
handl
e El <— Access token —» El

table

Fig. 11-16. The relationship between jobs, processes, and threads.
Severa fibers can also be multiplexed on one thread (not shown).

Win32 API Function

Description

CreateProcess Create a new process

CreateThread Create a new thread in an existing process
CreateFiber Create a new fiber

ExitProcess Terminate current process and all its threads
ExitThread Terminate this thread

ExitFiber Terminate this fiber

SetPriorityClass Set the priority class for a process
SetThreadPriority Set the priority for one thread
CreateSemaphore Create a new semapahore

CreateMutex Create a new mutex

OpenSemaphore Open an existing semaphore

OpenMutex Open an existing mutex
WaitForSingleObject Block on a single semaphore, mutex, etc.
WaitForMultipleObjects | Block on a set of objects whose handles are given
PulseEvent Set an event to signaled then to nonsignaled

ReleaseMutex

Release a mutex to allow another thread to acquire it

ReleaseSemaphore

Increase the semaphore count by 1

EnterCriticalSection

Acquire the lock on a critical section

LeaveCriticalSection

Release the lock on a critical section

Fig. 11-17. Some of the Win32 calls for managing processes,
threads, and fibers.

Win32 process class priorities
Above Below

Realtime | High | Normal | Normal | Normal | Idle

Time critical 31 15 15 15 15 15

Highest 26 15 12 10 8 6

Win32 Above norma 25 14 11 9 7 5
thread Normal 24 13 10 8 6 4
priorities | Below normal 23 12 9 7 5 3
Lowest 22 11 8 6 4 2

Idle 16 1 1 1 1 1

Fig. 11-18. Mapping of Win32 priorities to Windows 2000 priori-
ties.

Priority
(31

System <

priorities \ o4

\16

User
priorities Y 8

Zero page thread 0

Idle thread

Next thread to run

Fig. 11-19. Windows 2000 supports 32 priorities for threads.

Does a down on the
semaphore and blocks

Semaphone

(@)

Blocked

Waiting on the semaphore

Running Semaphone

A

/
/7
/
/

/" Would like to do an up
on the semaphore but
Ready never gets scheduled

(b)

Fig. 11-20. An example of priority inversion.

/ Process

MS—-DOS program

~ 1

2

Trampoline ——-—] ﬁ 4

Operating system

Fig. 11-21. How old MS-DOS programs are run under Windows
2000.

Process Description
idle Not really a process, but home to the idle thread
system Creates smss.exe & paging files; reads registry; opens DLLs
smss.exe First real proc; much initialization; creates csrss & winlogon
csrss.exe Win32 subsystem process
winlogon.exe Login daemon
Isass.exe Authentication manager

services.exe

Looks in registry and starts services

Printer server

File server

Telnet daemon
Incoming email handler
Incoming fax handler
DNS resolver

Event logger
Plug-and-play manager

Allows remote jobs to use the printer
Serves requests for local files

Allows remote logins

Accepts and stores inbound email

Accepts and prints inbound faxes

Internet domain name system server

Logs various system events

Monitors hardware to see what is out there

Fig. 11-22. The processes starting up during the boot phase. The
ones above the line are always started. The ones below it are
examples of services that could be started.

2GB

Process A

4 GB p—

Process A's
private code
and data

I
0

Process B

Process B's
private code
and data

Process C

Process C's
private code
and data

Bottom and top
64 KB are invalid

Fig. 11-23. Virtual address space layout for three user processes.
The white areas are private per process. The shaded areas are
shared among all processes.

Region {

Process A

Stack

Data

Shared
library

Program

Backing store on disk

AN

Progl.exe

-
-
-
-
-
-
-
-
-
-

Prog2.exe

Process B

Stack

Data

Shared
library

Program

Fig. 11-24. Mapped regions with their shadow pages on disk. The
lib.dll file is mapped into two address spaces at the same time.

Win32 API function

Description

VirtualAlloc Reserve or commit a region

VirtualFree Release or decommit a region

VirtualProtect Change the read/write/execute protection on a region
VirtualQuery Inquire about the status of a region

VirtualLock Make a region memory resident (i.e., disable paging for it)

VirtualUnlock

Make a region pageable in the usual way

CreateFileMapping

Create a file mapping object and (optionally) assign it a hame

MapViewOfFile

Map (part of) a file into the address space

UnmapViewOfFile

Remove a mapped file from the address space

OpenFileMapping

Open a previously created file mapping object

Fig. 11-25. The principal Win32 API functions for managing vir-
tual memory in Windows 2000.

Bits 20 3 111111111

Not W
Page frame used G|L|DJA|C . ulwjv
G: Page is global to all processes Wt: Write through (no caching)
L: Large (4-MB) page U: Page is accessible in user mode
D: Page is dirty W: Writing to the page permitted
A: Page has been accessed V: Valid page table entry

C: Caching enabled/disabled

Fig. 11-26. A page table entry for a mapped page on the Pentium.

Zero page needed (8)

Page read in (6)

Soft page fault (2)

(

To \ \
Working P
sets
Mod- Standby Free Zeroed
ified > | Page > | page > page
page | vodified | 1St [Dealloc(s)| ISt | zero list
list page page
writer(4) thread (7)
Bottom
A W N

Page evicted from a working set (1)

Fig. 11-27. The various page lists and the transitions between

them.

Process exist (3)

Bad
RAM
page
list

Page frame database

Page tables
State Cnt WS Other PT Next
) S =———
14 | Clean - X
13 | Dirty X
List headers 12 | Clean 1
11 | Active 20 “““';-“"’
10 | Clean '
9 | Dirty 7
8 | Active 4)
[Modified > 7 | Dirty :
6 | Free X
5 | Free ——D
4 | Zeroed X
3 | Active 6 j
2 | Zeroed)
1 | Active 14 D
0 [Zeroed 1

Fig. 11-28. Some of the mgjor fields in the page frame database
for avalid page.

API group

Description

Window management

Create, destroy, and manage windows,

Menus

Create, destroy, and append to menus and menu bars

Dialog boxes

Pop up a dialog box and collect information

Painting and drawing

Display points, lines, and geometric figures

Text

Display text in some font, size, and color

Bitmaps and icons

Placement of bitmaps and icons on the screen

Colors and palettes

Manage the set of colors available

The clipboard

Pass information from one application to another

Input

Get information from the mouse and keyboard

Fig. 11-29. Some categories of Win32 API calls.

User process

User
program
N
7

\

Rest of windows

Y
Filter
Y Y
Function Function
Y Y Y
Monolithic Bus Bus

Y Y Y

Hardware abstraction layer

Driver
> stack

Controller Controller Controller

' '

Fig. 11-30. Windows 2000 allows drivers to be stacked.

Win32 API function | UNIX Description

CreateFile open Create a file or open an existing file; return a handle
DeleteFile unlink | Destroy an existing file

CloseHandle close | Close afile

ReadFile read Read data from a file

WriteFile write Write data to a file

SetFilePointer Iseek | Set the file pointer to a specific place in the file
GetFileAttributes stat Return the file properties

LockFile fentl Lock a region of the file to provide mutual exclusion
UnlockFile fentl Unlock a previously locked region of the file

Fig. 11-31. The principal Win32 API functionsfor file I/O. The
second column gives the nearest UNIX equivalent.

/* Open files for input and output. */

inhandle = CreateFile("data”, GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);

outhandle = CreateFile("newf', GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,
FILE_ATTRIBUTE _NORMAL, NULL);

/* Copy the file. */
do {

s = ReadFile(inhandle, buffer, BUF_SIZE, &count, NULL);

If (s && count > 0) WriteFile(outhandle, buffer, count, &ocnt, NULL);
} while (s > 0 && count > 0);

/* Close the files. */
CloseHandle(inhandle);
CloseHandle(outhandle);

Fig. 11-32. A program fragment for copying afile using the Win-
dows 2000 API functions.

Win32 API function UNIX Description
CreateDirectory mkdir Create a new directory
RemoveDirectory rmdir Remove an empty directory
FindFirstFile opendir | Initialize to start reading the entries in a directory
FindNextFile readdir | Read the next directory entry
MoveFile rename | Move a file from one directory to another
SetCurrentDirectory chdir Change the current working directory

Fig. 11-33. The principal Win32 API functions for directory
management. The second column gives the nearest UNIX

equivalent, when one exists.

- 1 KB >

))
«
))
S8

16 | First user file
15 I/(Reserved for future use) %)

14 7(Reserved for future use) 7/ ///////
13 P/(Reserved for future use)/// W
12 P/(Reserved for future use)’ G

11 | $Extend Extentions: quotas,etc
10 [$Upcase Case conversion table

9 | $Secure Security descriptors for all files

$BadClus List of bad blocks > Metadata files

$Boot Bootstrap loader
$Bitmap Bitmap of blocks used
$ Root directory
SAttrDef Attribute definitions
$Volume Volume file
$LogFile Log file to recovery
$MftMirr - Mirror copy of MFT
$Mft Master File Table J

OFRLNWMAMIUITO N

Fig. 11-34. The NTFS master file table.

Attribute Description
Standard information Flag bits, timestamps, etc.
File name File name in Unicode; may be repeated for MS-DOS name
Security descriptor Obsolete. Security information is now in $Extend$Secure
Attribute list Location of additional MFT records, if needed
Object ID 64-bit file identifier unique to this volume
Reparse point Used for mounting and symbolic links
Volume name Name of this volume (used only in $Volume)
Volume information Volume version (used only in $Volume)
Index root Used for directories
Index allocation Used for very large directories
Bitmap Used for very large directories
Logged utility stream | Controls logging to $LogFile
Data Stream data; may be repeated

Fig. 11-35. The attributes used in MFT records.

Standard File name Data -«—— Info about data blocks —

info header header header
Record Header Run #1 Run #2 Run #3
—_—A A — N
header\
. . . . V
Standard 100 name|lo 9|20 4 |64t 2 80! 3 Unused
MTF info ' ' ' '
record : X X X ;
Disk blocks
Blocks numbers 20-23 64-65 80-82

Fig. 11-36. An MFT record for athree-run, nine-block file.

109
108 [Run#m+1 -~ [Runn 7]<—— Second extension record
107
106
105 [JRun #k+1] e |Run m |<«—— First extension record
104
103
102 [T MFT 105 MFT 108 JRun #1]- - JRun #k|<«—— Base record
101
100

Fig. 11-37. A file that requires three MFT records to store all its
runs.

A directory entry contains the MFT index for the file,

Standard Index root the length of the file name, the file name itself,
info header header and various fields and flags
Record \ \ /
header —
Stgndard Unused
info

Fig. 11-38. The MFT record for asmall directory.

\?? Directory \Devices MFT for HD volume 1

web.htm

maria

C: ~
D: k
Harddisk Volume 1

D

d
.

Root directory

1. Look up C:in\??

2. Follow symboilic link

to get disk portion

3. Look up path name

5. Return handle
to calling process

| Handle |

4. Create new
file object

Fig. 11-39. Steps in looking up the file C:\maria\web.htm.

Original uncompressed file

0 16 32 47
0 7. g 23 . 24 31"
Compressed Ulncloh*n;)relssgeld Compressed
Disk addr 30 37 o 55 85 92
@)
Header Five runs (of which two empties)

— A AN A A A

Staitg%ard File name [0 148 3018 | 018 |40i16[85:8 |0 8 UnuseV
S N R N A 2

(b)

Fig. 11-40. (a) An example of a 48-block file being compressed to
32 blocks. (b) The MFT record for the file after compression.

Random
128-hit key, K

l

Disk

Plaintext file Modified C = Encrypted file
—_—
DES
VT
Encryption

=
]

K retrieved

by applying
user's private

K encrypted with
user's public key

Fig. 11-41. Operating of the encrypting file system.

key to stored K
key on disk l
Modified | Plaintext file
> b
DES
e
Decryption

Header

Expiration
time

Groups

Default
CACL

User
SID

Group
SID

Restricted
SIDs

Privileges

Fig. 11-42. Structure of an access token .

Security
descriptor

Eile | Header |

Security [I)E(Ian'y
descriptor IS ACE

111111

Owner's SID Cathy

Group SID 110000
DACL r Alow |

111111

Allow
Everyone
100000

| Header |

Audit
Marilyn ACE
111111

Fig. 11-43. An example security descriptor for afile.

Win32 API function Description

InitializeSecurityDescriptor Prepare a new security descriptor for use

LookupAccountSid Look up the SID for a given user name

SetSecurityDescriptorOwner | Enter the owner SID in the security descriptor

SetSecurityDescriptorGroup | Enter a group SID in the security descriptor

InitializeAcl Initialize a DACL or SACL

AddAccessAllowedAce Add a new ACE to a DACL or SACL allowing access
AddAccessDeniedAce Add a new ACE to a DACL or SACL denying access
DeleteAce Remove an ACE from a DACL or SACL

SetSecurityDescriptorDacl Attach a DACL to a security descriptor

Fig. 11-44. The principal Win32 API functions for security.

| Kernel32.dll |

/

ntdil.dll |

User process reads from a file

Call is handled in shared library

Actual system call is made

\

/

| cache manger |

| 110 manager |

| NTFS | [FAT-32]

\

4

Y

| SCSI|| IDE

Call is caught by cache manager

If block is absent, page fault

Call to file system to get block

Call to disk driver to read block

Fig. 11-45. The path through the cache to the hardware.

