
0.1 Deadlock Avoidance

• Deadlock avoidance, allows the necessary conditions but makes sen-
sible choices to ensure that a deadlock-free system remains free from
deadlock

• With deadlock avoidance, a decision is made dynamically whether the
current resource allocation request will, if granted, potentially lead to
a deadlock

• Deadlock avoidance thus requires knowledge of future requests for pro-
cess resources

• Ways to avoid deadlock by careful resource allocation:

– Resource trajectories.

– Safe/unsafe states.

– Dijkstra’s Banker’s algorithm.

0.1.1 Resource Trajectories (See Fig. 1)

• The horizontal (vertical) axis represents the number of instructions
executed by process A (B)

• Every point in the diagram represents a joint state of the two processes

• If the system ever enters the box bounded by I1 and I2 on the sides
and I5 and I6 top and bottom, it will eventually deadlock when it gets
to the intersection of I2 and I6

• At this point, A is requesting the plotter and B is requesting the
printer, and both are already assigned

• The entire box is unsafe and must not be entered

• At point t the only safe thing to do is run process A until it gets to I4.
Beyond that, any trajectory to u will do

• At point t B is requesting a resource. The system must decide whether
to grant it or not

• If the grant is made, the system will enter an unsafe region and even-
tually deadlock

1



Figure 1: Two process resource trajectories.

0.1.2 Safe and Unsafe States (See Fig. 2)

•
∑n

i=1
Cij + Aj = Ej

– C: Current Allocation Matrix

– A: Resources Available

– E: Resources in Existence

• Add up all the instances of the resource j that have been allocated and
to this add all the instances that are available, the result is the number
of instances of that resource class that exist

• At any instant of time, there is a current state consisting of E, A, C,
and R (Request Matrix)

• A state is said to be safe if it is not deadlocked and there is some
scheduling order in which every process can run to completion even
if all of them suddenly request their maximum number of resources
immediately

• A total of 10 instances of the resource exist, so with 7 resources already
allocated, there are 3 still free

• The upper state of Fig 2 is safe because there exist a sequence of al-
locations (scheduler runs B) that allows all processes to complete; by
careful scheduling, can avoid deadlock

2



Figure 2: Demonstration that the state in is safe (upper), and in is not safe
(lower).

• The lower state of Fig 2 is not safe because this time scheduler runs A
and A gets another resource

• There is no sequence that guarantees completion

• An unsafe state is not a deadlock state

• The difference between a safe state and an unsafe state is that from a
safe state the system can guarantee that all processes wili finish; from
an unsafe state, no such guarantee can be given

0.1.3 The Banker’s Algorithm for Deadlock Avoidance

• Assume N Processes Pi, M Resources Rj

• Availability vector Availj, units of each resource (initialized to maxi-
mum, changes dynamically)

• Let Maxij be an N × M matrix

• Maxij = L means Process Pi will request at most L units of Rj

• Holdij Units of Rj currently held by Pi

• Needij Remaining need by Pi for units of Rj

3



• Needij = Maxij − Holdij, for all i, j

• Resource Request

– At any instance, Pi posts its request for resources in vector REQj

(i.e., no hold-and-wait)

– Step 1: verify that a process matches its needs.
if REQj > Needij abort –error, impossible

– Step 2: check if the requested amount is available.
if REQj > Availj goto Step 1 –Pi must wait

– Step 3: provisional allocation (i.e., guess and check).
Availj = Availj − REQj

Holdij = Holdij + REQj

Needij = Needij − REQj

if isSafe() then grant resources (system is safe) else cancel allo-
cation; goto Step 1–Pi must wait

• isSafe

– Find out whether the system is in a safe state. Work and Finish
are two temporary vectors.

– Step 1: initialize.
Workj = Availj for all j; Finishi = false for all i

– Step 2: find a process Pi such that
Finishi = false and Needij ≤ Workj, for all j

if no such process, goto Step 4

– Step 3: Workj = Workj + Holdij

(i.e., pretend it finishes and frees up the resources)
Finishi = true goto Step 2

– Step 4: if Finishi = true for all i

then return true–yes, the system is safe

else return false–no, the system is NOT safe

• What is safe?

– Safe with respect to some resource allocation

∗ very safe
NEEDi ≤ AV AIL for all Processes Pi. Processes can run to

completion in any order.

4



∗ safe (but take care)
NEEDi > AV AIL for some Pi

NEEDi ≤ AV AIL for at least one Pi such that There is at

least one correct order in which the processes may complete

their use of resources.

∗ unsafe (deadlock inevitable)
NEEDi > AV AIL for some Pi

NEEDi ≤ AV AIL for at least one Pi But some processes

cannot complete successfully.

∗ deadlock
NEEDi > AV AIL for all Pi Processes are already blocked or

will become so as they request a resource.

0.2 Deadlock Prevention

• The strategy of deadlock prevention is to design a system in such a way
that the possibility of deadlock is excluded a priori

• Methods for preventing deadlock are of two classes:

– indirect methods prevent the occurrence of one of the necessary
conditions listed earlier.

– direct methods prevent the occurrence of a circular wait condition.

• Deadlock prevention strategies are very conservative; they solve the
problem of deadlock by limiting access to resources and by imposing
restrictions on processes

• Make it impossible that one of the four conditions for deadlock arise

• Mutual exclusion

– In general, this condition cannot be disallowed

– we can avoid assigning resources when not absolutely necessary

– as few processes as possible should claim the resource

• Hold-and-wait

– The hold and-wait condition can be prevented by requiring that a
process request all its required resources at one time, and blocking
the process until all requests can be granted simultaneously

– Can we require processes to request all resources at once?

5



– Most processes do not statically know about the resources they
need

– Wasteful, but works

• No preemption

– One solution is that if a process holding certain resources is denied
a further request, that process must release its unused resources
and request them again, together with the additional resource

– Preemption is feasible for some resources (e.g., processor and mem-
ory), but not for others (state must be saved and restored)

• Circular Wait

– The circular wait condition can be prevented by defining a lin-
ear ordering of resource types. If a process has been allocated
resources of type R, then it may subsequently request only those
resources of types following R in the ordering

– order resources by an index:R1, R2, . . .

– requires that resources are always requested in order

– P1 holds Ri and requests Rj, and P2 holds Rj and requests Ri is
impossible

– sometimes a feasible strategy, but not generally efficient

6



0.3 Summary of Deadlock strategies

Table 1: Summary of Deadlock strategies

Principle Resource

Allocation

Strategy

Different

Schemes

Major Advan-

tages

Major Disadvan-

tages

DETECTION Very liberal;

grant resources

as requested

Invoke periodi-

cally to test for

deadlock

1- Never delays

process initia-

tion 2- Facilitates

on-line handling

Inherent preemp-

tion losses

PREVENTION Conservative;

undercommits

resources

Requesting all

resources at

once

1-Works well for

processes with sin-

gle burst of activity

2- No preemption is

needed

1- Inefficient 2-

Delays process

initiation

Preemption Convenient when

applied to resources

whose state can be

saved and restored

easily

1- Preempts more

often then neces-

sary 2-Subject to

cyclic restart

Resource

ordering

1- Feasible to en-

force via compile

time checks 2-

Needs no run-time

computation

1- Preempts with-

out immediate use

2- Disallows incre-

mental resource re-

quests

AVOIDANCE Selects midway

between that

of detection

and prevention

Manipulate to

find at least

one safe path

No preemption nec-

essary

1- Future resource

requirements must

be known 2- Pro-

cesses can be

blocked for long

periods

1 Memory Management

• The CPU fetches instructions and data of a program from memory;
therefore, both the program and its data must reside in the main (RAM
and ROM) memory

7



Figure 3: Allocating Memory.

• What is memory Huge linear array of storage

• malloc library call

– used to allocate and free memory

– finds sufficient contiguous memory

– reserves that memory

– returns the address of the first byte of the memory

• free library call

– give address of the first byte of memory to free

– memory becomes available for reallocation

• both malloc and free are implemented using the brk system call

• Example of allocation (see the Fig. 3)

char *ptr=malloc(4096); //char* is address of a single byte

• Modern multiprogramming systems are capable of storing more than
one program, together with the data they access, in the main memory

• A fundamental task of the memory management component of an
operating system is to ensure safe execution of programs by providing:

– Sharing of memory; issues are

∗ Transparency ; Several processes may co-exist, unaware of each
other, in the main memory and run regardless of the number
and location of processes.

8



∗ Efficiency ; CPU utilization must be preserved and memory
must be fairly allocated. Want low overheads for memory
management.

∗ Relocation Ability of a program to run in different memory
locations.

– Memory protection; processes must not corrupt each other (nor
the OS!)

• Information stored in main memory can be classified in a variety of
ways:

– Program (code) and data (variables, constants).

– Read-only (code, constants) and read-write (variables).

– Address (e.g., pointers) or data (other variables); binding (when
memory is allocated for the object): static or dynamic

– The compiler, linker, loader and run-time libraries all
cooperate to manage this information.

• Before a program can be executed by the CPU, it must go through
several steps:

– Compiling (translating)–generates the object code.

– Linking–combines the object code into a single self-sufficient ex-

ecutable code.

– Loading–copies the executable code into memory. May include
run-time linking with libraries.

– Execution–dynamic memory allocation.

• The process of associating program instructions and data (addresses)
to physical memory addresses is called address binding, or relocation

– Static–new locations are determined before execution

∗ Compile time: The compiler or assembler translates symbolic

addresses (e.g., variables) to absolute addresses.

∗ Load time: The compiler translates symbolic addresses to
relative (relocatable) addresses. The loader translates these
to absolute addresses.

– Dynamic–new locations are determined during execution

∗ Run time: The program retains its relative addresses. The
absolute addresses are generated by hardware.

9



Figure 4: From source to executable code.

1.1 Basic Memory Management

• An important task of a memory management system is to bring (load)
programs into main memory for execution. The following contiguous

memory allocation techniques were commonly employed by earlier op-
erating systems:

– Direct placement

– Overlays

– Partitioning

– Techniques similar to those listed above are still used by some
modern, dedicated special-purpose operating systems and real-
time systems

• Memory management systems can be divided into two classes:

1. those that move process back and forth between main memory
and disk during execution (swapping and paging)

2. those that do not

• starting with the second one

10



Figure 5: Three simple ways of organizing memory with an operating system
and one user process.

1.1.1 Monoprogramming without Swapping or Paging (see the
Fig. 5)

• The simplest possible memory management scheme is to run just one
program at a time, sharing the memory between that program and the
opreating system

• Memory allocation is trivial. No special relocation is needed, because
the user programs are always loaded (one at a time) into the same
memory location (absolute loading). The linker produces the same
loading address for every user program

• Examples:Early batch monitors, MS-DOS

1.1.2 Multiprogramming with Fixed Partitions (see the Fig. 6)

• Except on simple embedded systems, monoprogramming is hardly used
any more

• A simple method to accommodate several programs in memory at the
same time (to support multiprogramming) is partitioning

• The easiest way to achieve multiprogramming is simply to divide mem-
ory up into n (possibly unequal) partitions during system generation
or startup

• When a job arrives, it can be put into the input queue for the smallest
partition large enough to hold it

11



Figure 6: (a) Fixed memory partitions with separate input queues for each
partition. (b) Fixed memory partitions with a single input queues.

• The aim of multiprogramming is to increase the CPU utilization

• CPU utilization = 1 − pn, where n is the number of processes in the
memory, p is waiting-time fraction that a process spends for I/O.

• say p = 0.8, means process spend 80 percent of their time waiting for
I/O and n=10; then CPU utilization = 89%, in other words CPU
wasted 11 percent.

1.1.3 Relocation and Protection (see the Fig. 7)

• when a program is linked, the linker must know at what address the
program will begin in the memory

• In order to provide basic protection among programs sharing the mem-
ory, partitioning techniques use a hardware capability known as mem-

ory address mapping, or address translation

• suppose that the first instruction is a call to a procedure at absolute
address 100 within the binary file produced by the linker

• if this program is loaded in partition 1 (at address 100 K, see the Fig.
6), that instruction will jump to to absolute address 100, which is inside
the operating system

• what is needed is a call to 100K+100

12



Figure 7: Address Translation.

• this problem is known as the relocation problem possible solution is is
to modify the instructions as the program loaded into memory

• relocation during loading does not solve the protection problem

• A solution to both the relocation and protection problems is tp equip
the mackine with two special hardware registers, called the base and
limits registers

1.2 Swapping

Figure 8: Swapping.

13



• Two general approaches to memory management can be used, depend-
ing (in part) on the available hardware

• The simplest strategy, called swapping, consists of bringing in each
process in its entirety, running it for a while, then putting it back on
the disk

• The other strategy, called virtual memory, allows programs to run
even they are only partially in main memory

• The basic idea of swapping is to treat main memory as a preemptable

resource

• A high-speed swapping device is used as the backing storage of the
preempted processes

• Fragmentation refers to the unused memory that the memory manage-
ment system cannot allocate

– Internal fragmentation; Waste of memory within a partition, caused
by the difference between the size of a partition and the process
loaded. Severe in static partitioning schemes (Multiprogramming
with Fixed Partitions (MFT)).

– External fragmentation; Waste of memory between partitions, caused
by scattered noncontiguous free space. Severe in dynamic parti-
tioning schemes (Multiprogramming with Variable Partitions (MVT),
swapping).

• Compaction (aka relocation) is a technique that is used to overcome
external fragmentation

• The responsibilities of a swapper include:

– Selection of processes to swap out criteria: suspended/blocked
state, low priority, time spent in memory

– Selection of processes to swap in criteria: time spent on swapping
device, priority

– Allocation and management of swap space on a swapping device.
Swap space can be:

∗ system wide

∗ dedicated (e.g., swap partition or disk)

14


	Deadlock Avoidance
	Resource Trajectories (See Fig. 1)
	Safe and Unsafe States (See Fig. 2)
	The Banker's Algorithm for Deadlock Avoidance

	Deadlock Prevention
	Summary of Deadlock strategies
	Memory Management
	Basic Memory Management
	Monoprogramming without Swapping or Paging (see the Fig. 5)
	Multiprogramming with Fixed Partitions (see the Fig. 6)
	Relocation and Protection (see the Fig. 7)

	Swapping


