
0.1 UNIX File Management

• Focus on two types of files

– Ordinary files (stream of bytes)

– Directories

• And mostly ignore the others

– Character devices

– Block devices

– Named pipes

– Sockets

– Symbolic links

• UNIX index node (inode)

– Each file is represented by an Inode

– Inode contains all of a file’s metadata

∗ Access rights, owner,accounting info

∗ (partial) block index table of a file

– Each inode has a unique number (within a partition)

∗ System oriented name

∗ Try ‘ls –i’ on Unix (Linux)

– Directories map file names to inode numbers

∗ Map human–oriented to system–oriented names

∗ Mapping can be many–to–one; Hard links

ozdogan@ozdogan:~/week12$ man ls

.

-i, --inode print index number of each file

.

ozdogan@ozdogan:~/week12$ ls -i

toplam 128

901649 drwxr-xr-x 3 ozdogan ozdogan 4096 2004-05-25 15:00 ./

885067 drwxr--r-- 5 ozdogan ozdogan 8192 2004-05-25 14:47 ../

901651 drwxr-xr-x 2 ozdogan ozdogan 4096 2004-05-25 14:47 figures/

901656 -rw-r--r-- 1 ozdogan ozdogan 1264 2004-05-25 14:59 week12.aux

1



901658 -rw-r--r-- 1 ozdogan ozdogan 5264 2004-05-25 14:59 week12.dvi

901655 -rw-r--r-- 1 ozdogan ozdogan 8654 2004-05-25 14:59 week12.log

901657 -rw-r--r-- 1 ozdogan ozdogan 57 2004-05-25 14:59 week12.out

901659 -rw-r--r-- 1 ozdogan ozdogan 55968 2004-05-25 15:00 week12.ps

901652 -rw-r--r-- 1 ozdogan ozdogan 2153 2004-05-25 14:59 week12.tex

901654 -rw-r--r-- 1 ozdogan ozdogan 1939 2004-05-25 14:58 week12.tex~

901653 -rw-r--r-- 1 ozdogan ozdogan 13767 2004-05-25 14:47 week12.tex.backup

A code example for for printing out structure members of files; Try
‘structuremembers *’ on Unix (Linux)

/* structuremembers.c

print structure members of files

st_mode the type and mode of the file

st_ino

st_dev

st_rdev

st_nlink

st_uid

st_gid

st_size

st_atime

st_mtime

st_ctime

*/

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

main(argc,argv)

int argc; char *argv[];

{

struct stat status;

int i;

for(i=1; i < argc; i++)

if(stat (argv[i],&status))

fprintf(stderr,"Cannot stat %s \n",argv[i]);

else

printf("%15s %4.4o\n",argv[i],status.st_mode & 07777);

//printf("%15s %14d\n",argv[i],status.st_ino);

}

2



Internal sructure of week12 inode

Inode: 901649 Type: directory Mode: 0755 Flags: 0x0 Generation: 2473956264

User: 1000 Group: 1000 Size: 4096

File ACL: 0 Directory ACL: 0

Links: 3 Blockcount: 8

Fragment: Address: 0 Number: 0 Size: 0

ctime: 0x40b33fde -- Tue May 25 15:45:18 2004

atime: 0x40b34ba7 -- Tue May 25 16:35:35 2004

mtime: 0x40b33fde -- Tue May 25 15:45:18 2004

BLOCKS:

(0):1828886

TOTAL: 1

Internal sructure of week12.ps inode

Inode: 901659 Type: regular Mode: 0644 Flags: 0x0 Generation: 2473956273

User: 1000 Group: 1000 Size: 83309

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 176

Fragment: Address: 0 Number: 0 Size: 0

ctime: 0x40b34007 -- Tue May 25 15:45:59 2004

atime: 0x40b34016 -- Tue May 25 15:46:14 2004

mtime: 0x40b34007 -- Tue May 25 15:45:59 2004

BLOCKS:

(0-11):7742-7753, (IND):7754, (12-20):7755-7763

TOTAL: 22

• Inode Contents (see Fig. 1)

– Mode

∗ Type; Regular file or directory

∗ Access mode; rwxrwxrwx

– Uid; User ID

– Gid; Group ID

– atime; Time of last access

– ctime; Time when file was reference count created

– mtime; Time when file was last modified

– Size; Size of the file in bytes

3



Figure 1: Inode contents.

– Block count; Number of disk blocks used by the file.

– Note that number of blocks can be much less than expected given
the file size; Files can be sparsely populated

– Direct Blocks

∗ Block numbers of first 10 blocks in the file

∗ Most files are small; We can find blocks of file directly from
the inode (see Fig. 2left)

– Problem; How do we store files greater than 10 blocks in size?
Adding significantly more direct entries in the inode results in
many unused entries most of the time.

– Single Indirect Block ; Block number of a block containing block
numbers, (see Fig. 2right) In this case 8

∗ Requires two disk access to read; One for the indirect block;
one for the target block

∗ Max File Size

· In previous example; 10 direct + 8 indirect = 18 block file

· A more realistic example; Assume 1Kbyte block size, 4
byte block numbers 10 * 1K + 1K/4 * 1K = 266 Kbytes

∗ For large majority of files (¡ 266 K), only one or two accesses
required to read any block in file.

– Double Indirect Block; Block number of a block containing block
numbers of blocks containing block numbers

4



Figure 2: Left: Direct Block. Right: Single Indirect Block

– Triple Indirect; Block number of a block containing block num-
bers of blocks containing block numbers of blocks containing block
numbers

• Inode Summary

– The inode contains the on disk data associated with a file

– Contains mode, owner, and other bookkeeping

– Efficient random and sequential access via indexed allocation

– Small files (the majority of files) require only a single access

– Larger files require progressively more disk accesses for random
access; Sequential access is still efficient

– Can support really large files via increasing levels of indirection

• Where/How are Inodes Stored

• System V Disk Layout (s5fs) (see Fig. 3Upper)

– Boot Block; contain code to bootstrap the OS

– Super Block; Contains attributes of the file system itself; e.g. size,
number of inodes, start block of inode array, start of data block
area, free inode list, free data block list

– Inode Array

– Data blocks

• Some problems with s5fs

5



Figure 3: Upper: System V Disk Layout (s5fs). Middle: Layout of an Ext2
Partition. Lower: Layout of a Block Group.

– Inodes at start of disk; data blocks end. Long seek times; Must
read inode before reading data blocks

– Only one superblock; Corrupt the superblock and entire file sys-
tem is lost

– Block allocation suboptimal; Consecutive free block list created
at FS format time. Allocation and deallocation eventually ran-
domizes the list resulting the random allocation

– Inodes allocated randomly; Directory listing resulted in random
inode access patterns

• The Linux Ext2 File System (see Fig. 3Middle)

– Second Extended Filesystem; Evolved from Minix filesystem (via
”Extended Filesystem”)

– Features

∗ Block size (1024, 2048, and 4096) configured as FS creation

∗ Preallocated inodes (max number also configured at FS cre-
ation)

∗ Block groups to increase locality of reference

∗ Symbolic links ¡ 60 characters stored within inode

– Main Problem: unclean unmount → e2fsck

∗ Ext3fs keeps a journal of (metadata) updates

∗ Journal is a file where updated are logged

∗ Compatible with ext2fs

6



– Layout of an Ext2 Partition

∗ Disk divided into one or more partitions

∗ Partition:

· Reserved boot block,

· Collection of equally sized block groups,

· All block groups have the same structure

– Layout of a Block Group (see Fig. 3Lower)

∗ Replicated super block and group descriptors; For e2fsck

∗ Bitmaps identify used inodes/blocks

∗ All block have the same number of data blocks

∗ Advantages of this structure:

· Replication simplifies recovery

· Proximity of inode tables and data blocks (reduces seek
time)

"!�	!#

7


	UNIX File Management

