
Figure 1: Logical View of Segmentation (left) , User’s View of a Program
(right).

0.1 Segmentation

• The most important problem with base-and-limits (see Fig. ??) relo-
cation is that there is only one segment for each process

• Segmentation generalizes the base-and-limits technique by allowing each
process to be split over several segments (i.e., multiple base-limits pairs)

• Segment table maps 2-dimensional physical addresses (segment-number,
offset); each table entry has:

– base; contains starting physical address where segments reside in
memory

– limit specifies length of segment

• Table entries are filled as new segments are allocated for the process

• A segment is a region of contiguous memory. Although the segments
may be scattered in memory, each segment is mapped to a contiguous
region

• Memory-management scheme that supports user view of memory (see
Fig. 1)

• Program is collection of segments. Segment a logical unit such as:
main program, procedure, function, method, object, local variables,

1



Figure 2: Example of Segmentation

global variables, common block, stack, symbol table, array (see Fig. 2)

• When a process is created, an empty segment table is inserted into the
process control block (PCB)

• The segments are returned to the free segment pool when the process
terminates

• Segmentation, as well as the base and limits approach, causes external
fragmentation (because they require contiguous physical memory) and
requires memory compaction

• An advantage of the approach is that only a segment, instead of a whole
process, may be swapped to make room for the (new) process.

• Like paging, use virtual addresses and use disk to make memory look
bigger that it really is

• Segmentation can be implemented with or without paging

• Segment-table base register (STBR) points to segment table’s location
in memory

2



Figure 3: Sharing of Segmentation

• Segment-table length register (STLR) indicates number of segments
used by a program , segment number s is legal if s < STLR

• Segmentation Architecture

– Relocation; dynamic, by segment table

– Sharing; shared segments, same segment number

– Allocation; first fit/best fit, external fragmentation

– Protection: with each entry in segment table: illegal segment,
read/write/execute privileges

– Protection bits associated with segments; code sharing at segment
level

– Since segments vary in length, memory allocation a dynamic storage-
allocation problem

0.1.1 Segmentation with Paging

• Advantages of Segmentation

– Different protection for different segments read-only status for
code

3



– Enables sharing of selected segments (see Fig. 3)

– Easier to relocate segments than entire address space

– Enables sparse allocation of address space

• Disadvantages of Segmentation

– Still expensive/difficult to allocate contiguous memory to seg-
ments

– External fragmentation: Wasted memory

– Paging; Allocation easier, Reduces fragmentation

• Advantages of Paging

– Fast to allocate and free;

∗ Alloc: Keep free list of free pages and grab first page in list,
no searching by first-fit, best-fit

∗ Free: Add page to free list, no inserting by address or size

– Easy to swap-out memory to disk

∗ Page size matches disk block size

∗ Can swap-out only necessary pages

∗ Easy to swap-in pages back from disk

• Disadvantages of Paging

– Additional memory reference: Inefficient. Page table too large
to store as registers in MMU. Page tables kept in main memory.
MMU stores only base address of page table.

– Storage for page tables may be substantial

∗ Simple page table: Require entry for all pages in address
space. Even if actual pages are not allocated

∗ Partial solution: Base and bounds (limits) for page table.
Only processes with large address spaces need large page ta-
bles. Does not help processes with stack at top and heap at
bottom.

– Internal fragmentation: Page size does not match allocation size

∗ How much memory is wasted (on average) per process?

∗ Wasted memory grows with larger pages

• Combine Paging and Segmentation

4



– Structure

∗ Segments correspond to logical units: code, data, stack. Seg-
ments vary in size and are often large

∗ Each segment contains one or more (fixed-size) pages

– Two levels of mapping to make tables manageable (2 look-ups!)

∗ Page table for each segment

∗ Base (real address) and bound (size) for each page table

• Segments + Pages Advantages

– Advantages of Segments

∗ Supports sparse address spaces. If segment is not used, no
need for page table. Decreases memory required for page ta-
bles.

– Advantages of Paging

∗ Eliminate external fragmentation

∗ Segments to grow without any reshuffling

– Advantages of Both. Increases flexibility of sharing. Share at two
levels: Page or segment (entire page table)

• Segments + Pages Disadvantages

– Internal fragmentation increases. Last page of every segment in
every process

– Increases overhead of accessing memory

∗ Translation tables in main memory

∗ 1 or 2 overhead references for every real reference

– Large page tables

∗ Do not want to allocate page tables contiguously

∗ More problematic with more logical address bits

∗ Two potential solutions: Page the user page tables (multilevel
page table), Inverted page table

0.1.2 Segmentation with Paging: MULTICS

• MULTICS solved problems of external fragmentation and lengthy search
times by paging segments

5



Figure 4: Intel 386 Address Translation

• Solution differs from pure segmentation: segment-table entry contains
not base address of segment, but base address of page table for this
segment

0.1.3 Segmentation with Paging: The Intel Pentium (see Fig. 4)

• Intel 386 and later use segmentation with paging

• OS/2 uses full scheme

• Other OSes mostly only use pages; Linux, Windows NT and successors

1 INPUT/OUTPUT

1.1 Principles of I/O Hardware

• There exists a large variety of I/O devices:

– Many of the with different properties

– They seem to require different interfaces to manipulate and man-
age them

6



Table 1: Device I/O Port Locations on PCs (Partial).
I/O address range (hexadecimal) Device

000-00F DMA Controller
020-021 Interrupt Controller
040-043 Timer
200-20F Game Controller
2F8-2FF Serial port (secondary)
320-32F Hard disk Controller
378-37F Parallel port
3D0-3DF Graphics Controller
3F0-3F7 Diskette drive Controller
3F8-3FF Serial port (primary)

• We don’t want a new interface for every device

• Diverse, but similar interfaces leads to code duplication

• Challenge: Uniform and efficient approach to I/O

• Common concepts

– port

– bus

– controller (host adapter)

• each port is given a special address (see Table 1)

• communication, use an assembly instruction (high–level languages
only work with main memory) to read/write a port; e.g., OUT port,
reg : writes the value in CPU register reg to I/O port port

• protection, users should have access to some I/O devices but not to
others

• I/O instructions control devices

• Devices have addresses, used by

– direct I/O instructions

– memory-mapped I/O

7



Figure 5: A kernel I/O structure.

1.1.1 Device Controllers (see Fig. 5)

• I/O devices have controllers; disk controller, monitor controller, etc.

• controller manipulates/interprets electrical signals to/from the device

• controller accepts commands from CPU or provides data to CPU

• controller and CPU communicate over I/O ports; control, status, input
and output registers

1.1.2 I/O Devices

• Categories of I/O Devices (by usage)

– Human readable

∗ Used to communicate with the user

∗ Printers, Video Display, Keyboard, Mouse

– Machine readable

∗ Used to communicate with electronic equipment

∗ Disk and tape drives, Sensors, Controllers, Actuators

– Communication

8



∗ Used to communicate with remote devices

∗ Ethernet, Modems, Wireless

• I/O system calls abstract device behaviors in generic classes (see Fig.
5)

• Device-driver layer hides I/O-controller differences from kernel

• Devices vary in many dimensions

– character-stream or block

– sequential or random-access

– sharable or dedicated

– speed of operation

– read-write, read only, or write only

• Block and Character Devices; Block devices include disk drive

– commands include read, write, seek

– raw I/O or file-system access

– file system maps location i onto block + offset

– memory-mapped file access possible

• Character devices include keyboard, mouse, serial port

– commands include get, put

– libraries layered on top allow line editing

1.1.3 Characteristics (see Table 2) and Differences in I/O Devices

• Application

– Disk used to store files requires file management software

– Disk used to store virtual memory pages needs special hardware
and software to support it

– Terminal used by system administrator may have a higher priority

• Complexity of control;

– Unit of transfer; Data may be transferred as a stream of bytes for
a terminal or in larger blocks for a disk

9



Table 2: Characteristics of I/O Devices
aspect variation example
data transfer mode character, block terminal, disk
access method sequential, random modem, CD-ROM
transfer schedule synchronous, asynchronous tape, keyboard
sharing dedicated, sharable tape, keyboard
device speed latency, seek time, transfer

rate, delay between opera-
tions

I/O direction read only, write only, read-
write

CD-ROM, graphics
controller, disk

– Data representation; Encoding schemes

– Error conditions; Devices respond to errors differently

• Blocking; process suspended until I/O completed

– Easy to use and understand

– Insufficient for some needs

• Nonblocking; I/O call returns as much as available

– user interface, data copy (buffered I/O)

– implemented via multi-threading code for I/O call

– returns quickly with count of bytes transferred

• Asynchronous; process runs while I/O executes

– difficult to use

– I/O subsystem signals process when I/O completed, e.g., call-
backs: pointer to completion code

1.1.4 Evolution of the I/O Function (see Fig. 6)

• Processor directly controls a peripheral device. Example: CPU controls
a flip-flop to implement a serial line

• Controller or I/O module is added

– Processor uses programmed I/O without interrupts

10



Figure 6: Evolution of the I/O Function

– Processor does not need to handle details of external devices

– Example: A Universal Asynchronous Receiver Transmitter

∗ CPU simply reads and writes bytes to I/O controller

∗ I/O controller responsible for managing the signalling

• Controller or I/O module with interrupts. Processor does not spend
time waiting for an I/O operation to be performed

• Direct Memory Access

– Blocks of data are moved into memory without involving the pro-
cessor

– Processor involved at beginning and end only

• I/O module has a separate processor. Example: SCSI controller, con-
troller CPU executes SCSI program code out of main memory

• I/O processor

– I/O module has its own local memory, internal bus, etc.

– It is a computer in its own right.

– Example: Myrinet Multi-gigabit Network Controller

11



Figure 7: a) Separate I/O and memory space. b) Memory-mapped I/O. c)
Hybrid.

1.1.5 Memory-Mapped I/O (see Fig. 7)

• Separate I/O and memory space

– I/O controller registers appear as I/O ports

– Accessed with special I/O instructions

• Memory-mapped I/O

– Controller registers appear as memory

– Use normal load/store instructions to access

• Hybrid; x86 has both ports and memory mapped I/O

• Bus Architectures (see Fig. 8)

Figure 8: a) A single-bus architecture. b) A dual-bus memory architecture.

12



Figure 9: The Process to Perform DMA Transfer.

– A single-bus architecture; if the computer has a single bus, having
everyone look at every address is straightforward

– A dual-bus memory architecture; the trend in modern personal
computers is to have a dedicated high–speed memory bus. This
bus is tailored for optimize memory performance, with no com-
promises for the sake of slow I/O devices. Pentium systems even
have three external buses (memory, PCI, ISA)

1.1.6 Direct Memory Access (DMA)

• Takes control of the bus from the CPU to transfer data to and from
memory over the system bus

• Cycle stealing is used to transfer data on the system bus

• The instruction cycle is suspended so data can be transferred

• The CPU pauses one bus cycle, CPU Cache can hopefully avoid such
pauses

• Reduced number of interrupts occur, No expensive context switches

• Cycle stealing causes the CPU to execute more slowly; Still more effi-
cient than CPU doing transfer itself

13



• The CPU cache can hide some bus transactions

• Number of required busy cycles can be cut by

– integrating the DMA and I/O functions

– Path between DMA module and I/O module that does not include
the system bus

• The Process to Perform DMA Transfer (see Fig. 9)

1. device driver is told to transfer disk data to buffer at address X

2. device driver tells disk controller to transfer C bytes from disk to
buffer at address X

3. disk controller initiates DMA transfer

4. disk controller sends each byte to DMA controller

5. DMA controller transfers bytes to buffer X, increasing memory
address and decreasing C until C=0

6. when C=0, DMA interrupts CPU to signal transfer completion

1.1.7 Interrupts Revisited (see Fig. 10)

Figure 10: How interrupts happen. The connections between devices and
interrupt controller actually use interrupt lines on the bus rather than dedi-
cated wires.

• CPU interrupt request line triggered by I/O device

• Interrupt handler receives interrupts

• Maskable to ignore or delay some interrupts

14



• Interrupt vector to dispatch interrupt to correct handler based on pri-
ority some unmaskable

• Interrupt mechanism also used for exceptions, traps

1.2 Principles of I/O Software

Figure 11: a) Programmed I/O. b) Interrupt-Driven I/O. c) Direct Memory
Access.

1.2.1 Programmed I/O (see Fig. 11a)

• Also called polling, or busy waiting

• I/O module (controller) performs the action, not the processor

• Sets appropriate bits in the I/O status register

• No interrupts occur

• Processor checks status until operation is complete; Wastes CPU cycles

15



1.2.2 Interrupt-Driven I/O (see Fig. 11b)

• Processor is interrupted when I/O module (controller) ready to ex-
change data

• Processor is free to do other work

• No needless waiting

• Consumes a lot of processor time because every word read or written
passes through the processor

1.2.3 Direct Memory Access (see Fig. 11c)

• Transfers a block of data directly to or from memory

• An interrupt is sent when the task is complete

• The processor is only involved at the beginning and end of the transfer

16


	Segmentation
	Segmentation with Paging
	Segmentation with Paging: MULTICS
	Segmentation with Paging: The Intel Pentium (see Fig. 4)

	INPUT/OUTPUT
	Principles of I/O Hardware
	Device Controllers (see Fig. 5)
	I/O Devices
	Characteristics (see Table 2) and Differences in I/O Devices
	Evolution of the I/O Function (see Fig. 6)
	Memory-Mapped I/O (see Fig. 7)
	Direct Memory Access (DMA)
	Interrupts Revisited (see Fig. 10)

	Principles of I/O Software
	Programmed I/O (see Fig. 11a) 
	Interrupt-Driven I/O (see Fig. 11b)
	Direct Memory Access (see Fig. 11c)



