Ceng 328 Operating Systems Midterm July 28, 2009 10.40–12.30

Good Luck!

Answer all of the questions.

- 1. (5 pts) What are the two main purposes of an operating system?
- 2. (5 pts) You are supposed to design a highly reliable operating system. What is meant by "reliable"? Which criteria and measures should be taken care?
- 3. (10 pts) What is multiprogramming? Describe and compare single programming and pure multiprogramming. What is thrashing?
- 4. (10 pts) What is the purpose of system calls? For each of the following system calls, give a condition that causes it to fail: **fork** and **exec.**
- 5. (10 pts) What is a Critical Region? List and explain the four conditions that need to be satisfied to solve the critical-region problem?
- 6. (10 pts) In the solution to the dining philosophers problem, why is the state variable set to **HUNGRY** in the procedure *take_forks*?
- 7. (15 pts) Consider the following sets of processes, with the length of the CPU-burst time given in milliseconds. Arrival time is the time at which the process is added to the ready queue.

Process	Burst Time	Arrival Time	
P1	30	0	
P2	15	0	
P3	9	0	
P4	12	0	
P5	6	12	
P6	3	18	

i Draw appropriate charts illustrating the execution of these processes using FCFS, SJF non-preemptive, and SJF preemptive.

ii Calculate the wait times of each process for each strategy. Calculate the *average* wait times under each strategy.

Process	FCFS	SJF-nonpre	SJF
P1			
P2			
P3			
P4			
P5			
P6			
Average:			

- 8. (10 pts) A computer uses the relocation scheme of base-limit pair. What are the problems with such a protected system (compared to a paged or segmented system)? A program is 10000 bytes long and is loaded at address 40000. What values do the *base* and *limit* register get according to the scheme?
- 9. (10 pts) Describe internal and external fragmentation and explain the difference between them. Which one(s) occurs in paging systems? Which one(s) occurs in systems using pure segmentation? Explain.
- 10. (20 pts) What is the memory management unit (MMU) and what does it do? Illustrate the internal operation of the MMU with 8 8-KB pages.