
CENG328
Operating Systems

Laboratory II
Unix Tutorial & C Review I

2Cankaya University
Department of Computer Engineering

2011

1. Unix File System

● All the stored information on a UNIX computer is kept in a filesystem.

● The place in the filesystem tree where you are located is called the current working directory.

● Every item in the UNIX filesystem tree is either a file, or a directory.

● A directory is like a file folder. A directory contained within another is called the child of the
other. A directory in the filesystem tree may have many children, but it can only have one
parent.

● A file can hold information, but cannot contain other files, or directories. The file is the
smallest unit in which information is stored.

3Cankaya University
Department of Computer Engineering

2011

1. Unix File System

● The UNIX file system has several important features, it contains several types of file.

● Ordinary files: This type of file is used to store your information, such as some text you
have written or an image you have drawn. Files which you create belong to you - you are
said to "own" them - and you can set access permissions to control which other users can
have access to them. Any file is always contained within a directory.

● Directories: A directory is a file that holds other files and other directories. You can
create directories in your home directory to hold files and other sub-directories.
Directories which you create belong to you, too.

● Special files: This type of file is used to represent a real physical device such as a printer,
tape drive or terminal. It may seem unusual to think of a physical device as a file, but it
allows you to send the output of a command to a device in the same way that you send it
to a file. For example:

cat scream.au > /dev/audio

This sends the contents of the sound file scream.au to the file /dev/audio which
represents the audio device attached to the system.

4Cankaya University
Department of Computer Engineering

2011

1. Unix File System

● Pipes; UNIX allows you to link two or more commands together using a pipe. The pipe
acts as a temporary file which only exists to hold data from one command until it is read
by another. The pipe takes the standard output from one command and uses it as the
standard input to another command.

command1 | command2 | command3

The | (vertical bar) character is used to represent the pipeline connecting the commands.
With practice you can use pipes to create complex commands by combining several (two
or more) simpler commands together.

● For example, analyze the following command:

cat /etc/passwd | grep student | cut -d\: -f5

● This command consists of three seperate parts:

– cat /etc/passwd: Displays all lines in /etc/passwd file and directs the output to the
next command via 1st pipe.

– grep student: Matches the previous output for lines containing the word "student"
and directs the output to the next command via 2nd pipe.

– cut -d\: -f 5: Splits the previous output with ':' character and selects the substring
with 5th index.

● As a whole, this command will seek real name (if available) of a given Unix username.

5Cankaya University
Department of Computer Engineering

2011

1.2. Unix File System Structure

● The UNIX file system is organized as a hierarchy of directories starting from a single directory
called root which is represented by a / (slash). Immediately below the root directory are
several system directories that contain information required by the operating system. The
standard system directories are given below. The details may vary between different UNIX
systems.

● / - The root of ALL files and directories.

● /bin/ - Executable system utilities, like ls, cp, rm.

● /boot/ - The kernel program.

● /dev/ - Where special device files are kept.

● /etc/ - System configuration files and databases.

● /home/ - Where the personal files and directories of all users are kept.

● /lib/ - Operating system and programming libraries.

● /usr/bin/ - Additional user commands.

● /root/ - The home directory of super user. The contents of this directory is usually
hidden for other users available on the system.

6Cankaya University
Department of Computer Engineering

2011

1.2. Unix File System Structure

● /tmp/ - System scratch files (all users can write here).

● /usr/bin/ - Additional user commands.

● /usr/include/ - Standard system header files.

● /usr/lib/ - More programming and system call libraries.

● Home Directory: Any UNIX system can have many users on it at any one time. As a user you
are given a home directory in which you are placed whenever you log on to the system. Users'
home directories are usually grouped together under a system directory such as /home. A
large UNIX system may have several hundred users, with their home directories grouped in
subdirectories according to some schema such as their organizational department.

● Pathnames: Every file and directory in the file system can be identified by a complete list of
the names of the directories that are on the route from the root directory to that file or
directory. Each directory name on the route is separated by a / (forward slash). For
example: /usr/bin/gcc. This gives the full pathname starting at the root directory and going
down through the directories usr and bin to the file gcc - the GNU c compiler.

7Cankaya University
Department of Computer Engineering

2011

2. C Review I

● Using argc and argv as command line arguments (code5.c):

#include <stdio.h>
int main(int argc, char *argv[])
{

int i;
for (i=0; i < argc; i++)
printf("command line argument [%d] = %s \n",i, argv[i]);

}

● Analyze the code.

● Execute the code. What is the output and why?

● Execute as:

./code5 <your name> <your surname> <your age>

● Describe the functionalities of argc and argv.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code5.c

8Cankaya University
Department of Computer Engineering

2011

2. C Review I

● Arrays, Pointers and Dynamic Memory Allocation

● Pointer: A variable that contains the address of a variable. (code6.c)

#include <stdio.h>
int main(int argc, char *argv[])
{

int x = 1, y = 2, z[10];
int *ip; /* ip is a pointer to int */
ip = &x; /* ip now points to x */
printf("The address of pointer 'ip' is %p \n",&ip);
printf("The thing that pointer 'ip' contains inside is %p \n",ip);
printf("The thing that pointer 'ip' points is %d \n",*ip);
printf("The address of variable 'x' is %p \n",&x);
printf("The value of variable 'x' is %d \n",x);
y = *ip; /* y has the value of x now */
ip = 0; / x is 0 now */

 ip = &z[0]; /* ip now points to z[0] */
return 0;

}

● Analyze the code.

● Execute the code. What is the output and why?

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code6.c

9Cankaya University
Department of Computer Engineering

2011

2. C Review I

● Exercise: Modify the code in the previous slide that;

– creates two "double" type pointers,

– puts numbers in,

– prints out the values inside the pointers (address information),

– prints out the values that pointers point.

● In C, there is a strong relationship between pointers and arrays, strong enough that pointers
and arrays should be discussed simultaneously. The pointer version of any code will in general
be faster (why?). (code7.c)

● Analyze the code.

● Execute the code several times. What is the output and why? Observe the changes in the
addressing scheme.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code7.c

10Cankaya University
Department of Computer Engineering

2011

2. C Review I

● Dynamic Memory Allocation: Allocating memory at runtime.

● Malloc; code8.c

– Analyze the code.

– What is the function of "malloc"?

● Realloc; code9.c

– Analyze the code.

– What is the function of "realloc"?

– What is happening by the assignment "ip = tmp;"?

● For other memory related functions take a look at man pages. e.g., man malloc.

– What is the difference between malloc and calloc? (We will discuss later)

– What is brk()? (We will discuss later)

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code8.c
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code9.c

11Cankaya University
Department of Computer Engineering

2011

2. C Review I

● Sending output to a device file; you should first open a terminal window and run w command
to see which users are logged on and which virtual terminal they are using:

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
student pts/0 :0 09:44 0.00s 0.23s 0.01s w

● #include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char** argv)
{
 char command[80];
 FILE* outs;

 if ((outs = fopen(argv[1], "w")) == NULL)
 {
 fprintf(stderr, "Can't open file, exiting.\n");
 exit(-1);
 }

 do
 {
 printf("> ");
 fgets(command, 80, stdin);
 fprintf(outs, "%s", command);
 } while (strcmp(command,"exit\n") != 0);

 fclose(outs);
 return 0;
}

12Cankaya University
Department of Computer Engineering

2011

2. C Review I

● Analyse the code.

● Open an another terminal window and execute the code, e.g. "./code /dev/pts/0"

● Observe how the program executes.

● Try to achieve the same using echo command.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

