
1 Threads

1.1 Overview

• A traditional (or heavyweight) process has a single thread of control.
The process model as we have discussed it thus far is based on two
independent concepts: resource grouping and execution. Sometimes it
is useful to separate them; this is where threads come in.

• A thread (also referred to as a light-weight process LWP) is a basic unit
of CPU utilization; it comprises

– a thread ID,

– a program counter,

– a register set,

– and a stack.

• All threads in a process have exactly the same address space, which
means that they also share the same global variables.

• It shares with other threads belonging to the same process its code section,
data section, and other OS resources, such as open files and signals (see
Fig. 1).

Figure 1: The first column lists some items shared by all threads in a process
(process properties). The second one lists some items private to each thread.

• Processes are used to group resources together; threads are the entities
scheduled for execution on the CPU.

• If a process has multiple threads of control in the same address space
running in quasi-parallel, as though they were separate processes (ex-
cept for the shared address space).

1



• Multithreading works the same way as the multiple processes does. The
CPU switches rapidly back and forth among the threads providing the
illusion that the threads are running in parallel, albeit on a slower CPU
than the real one.

• With three compute-bound threads in a process, the threads would
appear to be running in parallel, each one on a CPU with one-third the
speed of the real CPU.

• Fig. 2 illustrates the difference between a traditional single-threaded
process and a multithreaded process. It shows a traditional (or heavy-
weight) process, on the left, and 3 LWPs are drawn on the right.

Figure 2: Single-threaded and multithreaded processes.

• Although a thread must execute in some process, the thread and its
process are different concepts and can be treated separately.

– The threads share an address space, open files, and other re-
sources.

– The processes share physical memory, disks, printers, and other
resources.

• Since every thread can access every memory address within the process’
address space, there is no protection between threads because

– it is impossible,

– it should not be necessary. They are cooperating, not competing.

2



• Like a traditional process (i.e., a process with only one thread), a thread
can be in any one of several states. The transitions between thread
states are the same as the transitions between process states.

1.1.1 Motivation

• An application typically is implemented as a separate process with
several threads of control.

– A web browser might have one thread display images or text while
another thread retrieves data from the network.

– A word processor may have a thread for displaying graphics, an-
other thread for responding to keystrokes from the user, and a
third thread for performing spelling and grammar checking in the
background.

Figure 3: Left: A word processor with three threads. Right: A multithreaded
web server.

• In certain situations, a single application may be required to perform
several similar tasks.

– A busy web server may have several (perhaps thousands) of clients
concurrently accessing it.

– When the server receives a request, it creates a separate process
to service that request.

– Process creation is time consuming and resource intensive.

– In fact, this process-creation method was in common use before
threads became popular.

3



• Consider the Web server could be written in the absence of threads.
The net result is that many fewer requests/sec can be processed.

• The better approach would multithread the web-server process. Thus
threads gain considerable performance.

– The server would create a separate thread that would listen for
client requests;

– when a request was made, rather than creating another process,
the server would create another thread to service the request.

• Many OS kernels are now multithreaded; several threads operate in
the kernel, and each thread performs a specific task, such as managing
devices or interrupt handling.

1.1.2 Benefits

The benefits of multithreaded programming can be broken down into four
major categories:

1. Responsiveness. Multithreading an interactive application may allow
a program to continue running even if part of it is blocked or is per-
forming a lengthy operation, thereby increasing responsiveness to the
user. For instance, a multithreaded web browser could still allow user
interaction in one thread while an image was being loaded in another
thread.

2. Resource sharing. By default, threads share the memory and the
resources of the process to which they belong. The benefit of sharing
code and data is that it allows an application to have several different
threads of activity within the same address space.

3. Economy of Overheads. Allocating memory and resources for pro-
cess creation is costly. Because threads share resources of the process to
which they belong, it is more economical to create and context-switch
threads. In Solaris, for example, creating a process is about thirty
times slower than is creating a thread, and context switching is about
five times slower.

4. Utilization of multiprocessor architectures. The benefits of mul-
tithreading can be greatly increased in a multiprocessor architecture,
where threads may be running in parallel on different processors (real
parallelism).

4



1.2 Multithreading Models

• Support for threads may be provided either at the user level, for user
threads, or by the kernel, for kernel threads.

– User threads are supported above the kernel and are managed
without kernel support,

– whereas kernel threads are supported and managed directly by
the OS.

Process ProcessThread Thread

Process
table

Process
table

Thread
table

Thread
table

Run-time
system

Kernel
space

User
space

KernelKernel

Figure 4: (a) A user-level threads package. (b) A threads package managed
by the kernel.

• Implementing Threads in User Space:

– The threads package entirely in user space (see Fig. 4a). The
kernel knows nothing about them.

– The first, and most obvious, advantage is that a user-level threads
package can be implemented on an OS that does not support
threads.

– Among other issues, no trap is needed, no context switch is needed,
the memory cache need not be flushed, and so on. This makes
thread scheduling very fast.

– Despite their better performance, user-level threads packages have
a major problem as if a thread starts running, no other thread in
that process will ever run unless the first thread voluntarily gives
up the CPU.

5



– While user threads usually have lower management load com-
pared to kernel threads, one must consider this in relation to their
lower functionality.

• Implementing Threads in the Kernel:

– Supported by the kernel, the kernel performs all management (cre-
ation, scheduling, deletion, etc., see Fig. 4b).

– There is no thread table in each process. Instead, the kernel has
a thread table that keeps track of all the threads in the system.

– if one thread blocks, another may be run. In addition, if one
thread in a process causes a page fault, the kernel can easily check
to see if the process has any other runnable threads.

• Ultimately, there must exist a relationship between user threads and
kernel threads.

1.2.1 Many-to-One Model

• The many-to-one model (see Fig. 5) maps many user-level threads to
one kernel thread.

Figure 5: Many-to-one model.

• Thread management is done by the thread library in user space, so it is
efficient; but the entire process will block if a thread makes a blocking
system call.

6



• Also, because only one thread can access the kernel at a time, multiple
threads are unable to run in parallel on multiprocessors.

1.2.2 One-to-One Model

• The one-to-one model (see Fig. 6) maps each user thread to a kernel
thread.

Figure 6: One-to-one model.

• It provides more concurrency than the many-to-one model by allowing
another thread to run when a thread makes a blocking system call;

• it also allows multiple threads to run in parallel on multiprocessors.

• The only drawback to this model is that creating a user thread requires
creating the corresponding kernel thread.

• Because the overhead of creating kernel threads can burden the perfor-
mance of an application, most implementations of this model restrict
the number of threads supported by the system.

• Linux, along with the family of Windows OSs implement the one-to-one
model.

1.2.3 Many-to-Many Model

• The many-to-many model (see Fig. 7 ) multiplexes many user-level
threads to a smaller or equal number of kernel threads.

• The number of kernel threads may be specific to either a particular
application or a particular machine.

7



Figure 7: Many-to-many model.

• Whereas the many-to-one model allows the developer to create as many
user threads as she wishes, true concurrency is not gained because the
kernel can schedule only one thread at a time.

• The one-to-one model allows for greater concurrency, but the developer
has to be careful not to create too many threads within an application
(and in some instances may be limited in the number of threads she
can create).

• The many-to-many model suffers from neither of these shortcomings:

– Developers can create as many user threads as necessary, and the
corresponding kernel threads can run in parallel on a multiproces-
sor.

– Also, when a thread performs a blocking system call, the kernel
can schedule another thread for execution.

1.3 Thread Libraries

• A thread library provides the programmer an API for creating and
managing threads. There are two primary ways of implementing a
thread library.

1. The first approach is to provide a library entirely in user space with
no kernel support. All code and data structures for the library

8



exist in user space. This means that invoking a function in the li-
brary results in a local function call in user space and not a system
call.

2. The second approach is to implement a kernel-level library sup-
ported directly by the OS. In this case, code and data structures
for the library exist in kernel space. Invoking a function in the
API for the library typically results in a system call to the kernel.

• Three main thread libraries are in use today:

1. POSIX Pthreads. Pthreads, the threads extension of the POSIX
standard, may be provided as either a user- or kernel-level library.

2. Win32. The Win32 thread library is a kernel-level library avail-
able on Windows systems.

3. Java. The Java thread API allows thread creation and manage-
ment directly in Java programs. However, because in most in-
stances the JVM is running on top of a host OS, the Java thread
API is typically implemented using a thread library available on
the host system.

1.3.1 Pthreads

• Pthreads refers to the POSIX standard (IEEE 1003.1c) defining an API
for thread creation and synchronization.

• This is a specification for thread behavior, not an implementation. Op-
erating system designers may implement the specification in any way
they wish.

• Numerous systems implement the Pthreads specification, including So-
laris, Linux, Mac OS X, and Tru64 UNIX. Shareware implementations
are available in the public domain for the various Windows OSs as well.

• A common thread call is thread yield, which allows a thread to volun-
tarily give up the CPU to let another thread run.

– Such a call is important because there is no clock interrupt to

actually enforce time-sharing as there is with processes.

– Thus it is important for threads to be polite and voluntarily sur-
render the CPU from time to time to give other threads a chance
to run.

9



Figure 8: Some of the Pthreads function calls.

• The C program shown below demonstrates the basic Pthreads API for
constructing a multithreaded program that calculates the summation
of a nonnegative integer in a separate thread (do not forget to compile
with -lpthread flag.).

• In a Pthreads program, separate threads begin execution in a specified
function (in this program; runner()).

#include <pthread.h>

#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

void *runner(void *param); /* the thread */

int main(int argc, char *argv[])

{

pthread_t tid; /* the thread identifier */

pthread_attr_t attr; /* set of thread attributes */

if (argc != 2) {

fprintf(stderr, "usage: a.out <integer value>\n");

return -1;

}

if (atoi(argv [1]) < 0) {

fprintf(stderr,"%d must be >= O\n",atoi(argv[1]));

return -1;

}

/* get the default attributes */

pthread_attr_init (&attr);

10



/* create the thread */

pthread_create(&tid,&attr,runner,argv[1]) ;

/* wait for the thread to exit */

pthread_join(tid,NULL) ;

printf (" sum = %d\n", sum) ;

}

/* The thread will begin control in this function */

void *runner(void *param)

{

int i, upper = atoi(param);

sum = 0;

for (i = 1; i <= upper; i++)

sum += i;

pthread_exit(0) ;

}

1.4 Threading Issues

1.4.1 The fork() and exec() System Calls

• If one thread in a program calls fork(),

– does the new process duplicate all threads,

– or is the new process single-threaded?

• Some UNIX systems have chosen to have two versions of fork(),

– one that duplicates all threads

– and another that duplicates only the thread that invoked the
fork() system call.

• Which of the two versions of fork() to use depends on the application.

– If exec() is called immediately after forking, then duplicating all
threads is unnecessary, as the program specified in the parameters
to exec() will replace the process. In this instance, duplicating
only the calling thread is appropriate.

– If, however, the separate process does not call exec() after forking,
the separate process should duplicate all threads.

11



1.4.2 Cancellation

• Thread cancellation is the task of terminating a thread before it has
completed.

– For example, if multiple threads are concurrently searching through
a database and one thread returns the result, the remaining threads
might be canceled.

– Another situation might occur when a user presses a button on a
web browser that stops a web page from loading any further.

• A thread that is to be canceled is often referred to as the target
thread. Cancellation of a target thread may occur in two different
scenarios:

1. Asynchronous cancellation. One thread immediately termi-
nates the target thread.

– The difficulty with cancellation occurs in situations where re-
sources have been allocated to a canceled thread or where a
thread is canceled while in the midst of updating data it is
sharing with other threads.

– Often, the OS will reclaim system resources from a canceled
thread but will not reclaim all resources. Therefore, canceling
a thread asynchronously may not free a necessary system-wide
resource.

2. Deferred cancellation. The target thread periodically checks
whether it should terminate, allowing it an opportunity to termi-
nate itself in an orderly fashion.

– With deferred cancellation, in contrast, one thread indicates
that a target thread is to be canceled, but cancellation occurs
only after the target thread has checked a flag to determine
if it should be canceled or not.

– This allows a thread to check whether it should be canceled
at a point when it can be canceled safely. Pthreads refers to
such points as cancellation points.

1.4.3 Signal Handling

• A signal is used in UNIX systems to notify a process that a particular
event has occurred.

12



• A signal may be received either synchronously or asynchronously,
depending on the source of and the reason for the event being signaled.

1. A signal is generated by the occurrence of a particular event.

2. A generated signal is delivered to a process.

3. Once delivered, the signal must be handled.

• Examples of synchronous signals include illegal memory access and
division by O. If a running program performs either of these actions, a
signal is generated.

• Synchronous signals are delivered to the same process that performed
the operation that caused the signal (that is the reason they are con-
sidered synchronous).

• When a signal is generated by an event external to a running process,
that process receives the signal asynchronously.

• Examples of such signals include terminating a process with specific
keystrokes (such as < control >< C > and having a timer expire.

• Typically, an asynchronous signal is sent to another process.

• Every signal may be handled by one of two possible handlers:

– A default signal handler.

– A user-defined signal handler

• Every signal has a default signal handler that is run by the kernel
when handling that signal. This default action can be overridden by a
user-defined signal handler that is called to handle the signal.

1.5 Operating-System Examples

1.5.1 Linux Threads

• Linux provides the fork() system call with the traditional functional-
ity of duplicating a process. Linux also provides the ability to create
threads using the clone() system call.

• However, Linux does not distinguish between processes and threads. In
fact, Linux generally uses the term task -rather than process or thread
- when referring to a flow of control within a program.

13



• When clone() is invoked, it is passed a set of flags, which determine
how much sharing is to take place between the parent and child tasks.
Some of these flags are listed in Fig. 9 below:

Figure 9: Some flags for clone() system call.

• if clone() is passed the flags above in the Fig. 9, the parent and child
tasks will share the same mentioned resources. Using clone() in this
fashion is equivalent to creating a thread.

• However, if none of these flags are set when clone() is invoked, no
sharing takes place, resulting in functionality similar to that provided
by the fork() system call.

2 CPU scheduling

CPU scheduling is the basis of multiprogrammed OSs. By switching the
CPU among processes, the OS can make the computer more productive.

2.1 Basic Concepts

• In multiprogramming systems, whenever two or more processes are
simultaneously in the ready state, a choice has to be made which process
to run next.

– The part of the OS that makes the choice is called the scheduler

– and the algorithm it uses is called the scheduling algorithm.

• In a single-processor system, only one process can run at a time; any
others must wait until the CPU is free and can be rescheduled.

• Every time one process has to wait, another process can take over use
of the CPU.

14



• Scheduling of this kind is a fundamental OS function. Almost all com-
puter resources are scheduled before use.

• The CPU is, of course, one of the primary computer resources. Thus,
its scheduling is central to OS design.

• Many of the same issues that apply to process scheduling also apply to
thread scheduling, although some are different.

2.1.1 CPU-I/O Burst Cycle

• The success of CPU scheduling depends on an observed property of
processes:

– Process execution consists of a cycle of CPU execution and I/O
wait. Processes alternate between these two states.

– Process execution begins with a CPU burst. That is followed
by an I/O burst, which is followed by another CPU burst, then
another I/O burst, and so on.

• Eventually, the final CPU burst ends with a system request to terminate
execution (see Fig. 10).

Figure 10: Alternating sequence of CPU and I/O bursts.

15



• The durations of CPU bursts have been measured extensively. They
tend to have a frequency curve similar to that shown in Fig. 11.

Figure 11: Histogram of CPU-burst durations.

• The curve is generally characterized as exponential or hyperexponen-
tial, with a large number of short CPU bursts and a small number of
long CPU bursts.

– An I/O-bound program typically has many short CPU bursts.

– A CPU-bound program might have a few long CPU bursts.

• This distribution can be important in the selection of an appropriate
CPU-scheduling algorithm.

• Nearly all processes alternate bursts of computing with (disk) I/O re-
quests, as shown in Fig. 12.

• Some processes, such as the one in Fig. 12a, spend most of their time
computing (CPU-bound), while others, such as the one in Fig. 12b,
spend most of their time waiting for I/O (I/O-bound).

• Having some CPU-bound processes and some I/O-bound processes in
memory together is a better idea than first loading and running all the
CPU-bound jobs and then when they are finished loading and running
all the I/O-bound jobs (a careful mix of processes).

16



Long CPU burst

Short CPU burst

Waiting for I/O

(a) 

(b) 

Time

Figure 12: Bursts of CPU usage alternate with periods of waiting for I/O.
(a) A CPU-bound process. (b) An I/O-bound process.

2.1.2 CPU Scheduler

• Whenever the CPU becomes idle, the OS must select one of the pro-
cesses in the ready queue to be executed.

• The selection process is carried out by the short-term scheduler (or
CPU scheduler).

• The scheduler selects a process from the processes in memory that are
ready to execute and allocates the CPU to that process.

• Conceptually all the processes in the ready queue are lined up waiting
for a chance to run on the CPU. The records in the queues are generally
process control blocks (PCBs) of the processes.

2.1.3 Pre-emptive Scheduling

• CPU-scheduling decisions may take place under the following four cir-
cumstances:

1. When a process switches from the running state to the waiting
state (for example, as the result of an I/O request or an invocation
of wait for the termination of one of the child processes).

2. When a process switches from the running state to the ready state
(for example, when an interrupt occurs).

3. When a process switches from the waiting state to the ready state
(for example, at completion of I/O, on a semaphore, or for some
other reason).

17



4. When a process terminates. If no process is ready, a system-
supplied idle process is normally run.

• For situations 1 and 4, there is no choice in terms of scheduling. A new
process (if one exists in the ready queue) must be selected for execution.

• There is a choice, however, for situations 2 and 3. When schedul-
ing takes place only under circumstances 1 and 4, we say that the
scheduling scheme is nonpreemptive or cooperative; otherwise, it is
pre-emptive.

– Under nonpreemptive scheduling, once the CPU has been allo-
cated to a process, the process keeps the CPU until it releases the
CPU either by terminating or by switching to the waiting state.

– Unfortunately, pre-emptive scheduling incurs a cost associated
with access to shared data.

∗ Consider the case of two processes that share data.

∗ While one is updating the data, it is preempted so that the
second process can run.

∗ The second process then tries to read the data, which are in
an inconsistent state.

∗ In such situations, we need new mechanisms to coordinate
access to shared data.

• A nonpreemptive scheduling algorithm picks a process to run and
then just lets it run until it blocks (either on I/O or waiting for an-
other process) or until it voluntarily releases the CPU. First-Come-
First-Served (FCFS), Shortest Job first (SJF).

• In contrast, a pre-emptive scheduling algorithm picks a process
and lets it run for a maximum of some fixed time. If it is still running
at the end of the time interval, it is suspended and the scheduler picks
another process to run. Round-Robin (RR), Priority Scheduling.

2.1.4 Dispatcher

• Another component involved in the CPU-scheduling function is the
dispatcher.

• The scheduler is concerned with deciding policy, not providing a mech-

anism. The dispatcher is the low-level mechanism (Responsibility:
Context-switch).

18



• The dispatcher is the module that gives control of the CPU to the
process selected by the short-term scheduler. This function involves
the following:

– Switching context,

– Switching to user mode,

– Jumping to the proper location in the user program to restart that
program.

• The dispatcher should be as fast as possible, since it is invoked during
every process switch. The time it takes for the dispatcher to stop one
process and start another running is known as the dispatch latency.

2.2 Scheduling Criteria

• Different CPU scheduling algorithms have different properties, and the
choice of a particular algorithm may favour one class of processes over
another.

• In choosing which algorithm to use in a particular situation, we must
consider the properties of the various algorithms.

– CPU utilization. We want to keep the CPU as busy as possible.
Conceptually, CPU utilization can range from 0 to 100 percent.
In a real system, it should range from 40 percent (for a lightly
loaded system) to 90 percent (for a heavily used system).

– Throughput. If the CPU is busy executing processes, then work
is being done. One measure of work is the number of processes
that are completed per time unit, called throughput. For long
processes, this rate may be one process per hour; for short trans-
actions, it may be 10 processes per second.

– Turnaround time. From the point of view of a particular pro-
cess, the important criterion is how long it takes to execute that
process. The interval from the time of submission of a process to
the time of completion is the turnaround time.

∗ Tr = Ts + Tw

∗ Ts :Execution time.

∗ Tw :Waiting time.

19



– Waiting time. The CPU scheduling algorithm does not affect
the amount of time during which a process executes or does I/O;
it affects only the amount of time that a process spends waiting
in the ready queue.

– Response time. In an interactive system, turnaround time may
not be the best criterion. Often, a process can produce some
output fairly early and can continue computing new results while
previous results are being output to the user. Thus, another mea-
sure is the time from the submission of a request until the first
response is produced.

• A typical scheduler is designed to select one or more primary perfor-
mance criteria and rank them in order of importance. One problem
in selecting a set of performance criteria is that they often conflict
with each other. For example, increased processor utilization is usu-
ally achieved by increasing the number of active processes, but then
response time decreases.

• It is desirable to maximize CPU utilization and throughput and
to minimize turnaround time, waiting time, and response time.

• In most cases, we optimize the average measure. However, under some
circumstances, it is desirable to optimize the minimum or maximum
values rather than the average. For example, to guarantee that all
users get good service, we may want to minimize the maximum response
time.

• A scheduling algorithm that maximizes throughput may not necessarily
minimize turnaround time.

– Given a mix of short jobs and long jobs, a scheduler that always
ran short jobs and never ran long jobs might achieve an excellent
throughput (many short jobs per hour) but at the expense of a
terrible turnaround time for the long jobs.

– If short jobs kept arriving at a steady rate, the long jobs might
never run, making the mean turnaround time infinite while achiev-
ing a high throughput.

• Investigators have suggested that, for interactive systems (such as time-
sharing systems), it is more important to minimize the variance in the
response time than to minimize the average response time.

20



• Some goals of the scheduling algorithm under different circumstances,
see Fig. 13.

Figure 13: Some goals of the scheduling algorithm under different circum-
stances.

• Under all circumstances, fairness is important. Another general goal is
keeping all parts of the system busy when possible. If the CPU and all
the I/O devices can be kept running all the time, more work gets done
per second.

21


	Threads
	Overview
	Motivation
	Benefits

	Multithreading Models
	Many-to-One Model
	One-to-One Model
	Many-to-Many Model

	Thread Libraries
	Pthreads

	Threading Issues
	The fork() and exec() System Calls
	Cancellation
	Signal Handling

	Operating-System Examples
	Linux Threads


	CPU scheduling
	Basic Concepts
	CPU-I/O Burst Cycle
	CPU Scheduler
	Pre-emptive Scheduling
	Dispatcher

	Scheduling Criteria


