
Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.1

Lecture 8
Deadlock & Main Memory I
Lecture Information

Ceng328 Operating Systems at April 13, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.2

Contents

1 Deadlocks
System Model
Deadlock Characterization

Necessary Conditions
Resource-Allocation Graph

Methods for Handling Deadlocks
Deadlock Prevention

Mutual Exclusion
Hold and Wait
No Preemption
Circular Wait

Deadlock Avoidance
Safe State

Deadlock Detection
Single Instance of Each Resource Type
Detection-Algorithm Usage

Recovery From Deadlock
Process Termination
Resource Preemption

2 Main memory
Background

Basic Hardware



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.3

Deadlocks & System Model I
• A system consists of a finite number of resources

to be distributed among a number of competing processes.
• The resources are partitioned into several types, each

consisting of some number of identical instances.
• Reusable : something that can be safely used by one

process at a time and is not consumed by that use
(processors, memory, files, devices, databases, and
semaphores).

• Consumable : these can be created and destroyed
(interrupts, signals, messages, and information in I/O
buffers).

• A preemptable resource is one that can be taken away
from the process owning it with no ill effects.(Memory,
CPU)

• A nonpreemptable resource , in contrast, is one that
cannot be taken away from its current owner without
causing the computation to fail (printer, CD-R(W)floppy
disk).

• In general, deadlocks occur when sharing reusable and
nonpreemptable resources.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.4

Deadlocks & System Model II

• Under the normal mode of operation, a process may utilize
a resource in only the following sequence:

1 Request . If the request cannot be granted immediately,
then the requesting process must wait until it can acquire
the resource.

2 Use. The process can operate on the resource.
3 Release . The process releases the resource.

• Request and release of resources that are not managed
by the OS can be accomplished through the wait() and
signal() operations on semaphores or through acquisition
and release of a mutex lock.

• A system table records whether each resource is free or
allocated; for each resource that is allocated, the table
also records the process to which it is allocated.

• A process whose resource request has just been denied
will normally sit in a tight loop requesting the resource,
then sleeping, then trying again.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.5

Deadlocks & System Model III

• One possible way of allowing user management of
resources is to associate a semaphore with each
resource. Mutexes can be used equally well.

Figure: Using a semaphore to protect resources. (a) One
resource. (b) Two resources.

• A set of processes is in a deadlock state when every
process in the set is waiting for an event that can be
caused only by another process in the set.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.6

Deadlocks & System Model IV
• Deadlocks can occur in a variety of situations. In a

database system, for example, a program may have to
lock several records it is using, to avoid race conditions.

• If process A locks record R1 and process B locks record
R2, and then each process tries to lock the other one’s
record, we also have a deadlock (see Fig. 2).

Figure: (a) Deadlock-free code. (b) Code with a potential deadlock.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.7

Deadlocks & System Model V

• Deadlocks can occur on hardware resources or on
software resources.

• Unlike other problems in multiprogramming systems, there
is no efficient solution to the deadlock problem in the
general case.

• A programmer who is developing multithreaded
applications must pay particular attention to this problem.

• Multithreaded programs are good candidates for deadlock
because multiple threads can compete for shared
resources.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.8

Necessary Conditions I

• A deadlock situation can arise if the following
four conditions hold simultaneously in a system:

• Mutual exclusion . At least one resource must be held in a
nonsharable mode;

• Hold and wait . A process must be holding at least one
resource and waiting to acquire additional resources that
are currently being held by other processes.

• No preemption . Resources cannot be preempted; that is, a
resource can be released only voluntarily by the process
holding it, after that process has completed its task.

• Circular wait . A set {P0, P1, . . . , Pn} of waiting processes
must exist such that

• P0 is waiting for a resource held by P1,
• P1 is waiting for a resource held by P2 ,

•

...
• Pn−1 is waiting for a resource held by Pn,
• Pn is waiting for a resource held by P0.

There must be a circular chain of two or more processes,
each of which is waiting for a resource held by the
next member of the chain.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.9

Necessary Conditions II

Figure: An example to Deadlock.

We emphasise that all four conditions must hold for a
deadlock to occur.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.10

Resource-Allocation Graph I

• Deadlocks can be described more precisely in terms of a
directed graph called a system resource-allocation
graph .

• This graph consists of a set of vertices V and a set of
edges E .

• Pictorially, each process Pi is represented as a circle and
each resource type Rj as a rectangle.

(a) (b) (c)

T U

D

C

S

B

A

R

Figure: Resource allocation graphs. (a) Holding a resource. (b)
Requesting a resource. (c) Deadlock.

• An arc from a resource node (square) to a process node
(circle) means that the resource has previously been
requested by, granted to, and is currently held by that
process (see Fig. 4).



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.11

Resource-Allocation Graph II

• Since resource type Rj may have more than one instance,
each such instance is represented as a dot within the
rectangle.

Figure: Left: Resource-allocation graph. Middle:
Resource-allocation graph with a deadlock. Right:
Resource-allocation graph with a cycle but no deadlock



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.12

Resource-Allocation Graph III

• The resource-allocation graph shown in Fig. 5left depicts
the following situation. The sets P, R, and E :

• P = {P1, P2, P3}
• P = {R1, R2, R3, R4}
• E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 →

P1, R3 → P3}

• Given the definition of a resource-allocation graph, it can
be shown that, if the graph contains no cycles, then no
process in the system is deadlocked.

• If the graph does contain a cycle, then a deadlock
may exist.

• A cycle in the graph is a necessary but not a sufficient
condition for the existence of deadlock with resource types
of several instances.

• A knot must exist; a cycle with no non-cycle outgoing path
from any involved node



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.13

Resource-Allocation Graph IV

• Suppose that process P3 requests an instance of resource
type R2.

• Since no resource instance is currently available, a request
edge P3 → R2 is is added to the graph (see Fig. 5middle).

• At this point, two minimal cycles exist in the system.
• Now consider the resource-allocation graph in Fig. 5right.

• In this case, we also have a cycle. However, there is
no deadlock.

• Observe that process P4 may release its instance of
resource type R2.

• That resource can then be allocated to P3 , breaking the
cycle.

• In summary, if a resource-allocation graph does not have a
cycle, then the system is not in a deadlocked state.

• If there is a cycle, then the system may or may not be in a
deadlocked state.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.14

Resource-Allocation Graph V
• An example of resource allocation graphs (see Fig. 6);

Figure: Resource Allocation Graphs. Lower; either P2 or P4

could relinquish (release) a resource allowing P1 or P3 (which are
currently blocked) to continue.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.15

Resource-Allocation Graph VI
Another example of how resource graphs can be used; three
processes, A, B, and C, and three resources R, S, and T (see
Fig. 7);.

Figure: An example of how deadlock occurs.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.16

Resource-Allocation Graph VII

Figure: An example of how deadlock can be avoided.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.17

Methods for Handling Deadlocks I

• Generally speaking, we can deal with the deadlock
problem in one of three ways:

1 We can use a protocol to prevent or avoid deadlocks,
ensuring that the system will never enter a deadlock state.

• Deadlock prevention provides a set of methods for ensuring
that at least one of the necessary conditions (Section 1)
cannot hold (compile-time/statically, by design).

• Deadlock avoidance requires that the OS be given in advance
additional information concerning which resources a process
will request and use during its lifetime (run-time/dynamically,
before it happens).

2 We can allow the system to enter a deadlock state, detect
it, and recover .

• If a system does not employ either a deadlock-prevention or a
deadlock-avoidance algorithm, then a deadlock situation may
arise.

• In this environment, the system can provide an algorithm that
examines the state of the system to determine whether a
deadlock has occurred and an algorithm to recover from the
deadlock (run-time/dynamically, after it happens)

3 We can ignore (The Ostrich Algorithm; maybe if you ignore
it, it will ignore you) the problem altogether and pretend that
deadlocks never occur in the system.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.18

Methods for Handling Deadlocks II

• The third solution is the one used by most OSs, including
UNIX and Windows; it is then up to the application
developer to write programs that handle deadlocks.

• Most OSs potentially suffer from deadlocks that are not
even detected.

• Process table slots are finite resources. If a fork fails
because the table is full, a reasonable approach for the
program doing the fork is to wait a random time and try
again.

• The maximum number of open files is similarly restricted by
the size of the i-node table, so a similar problem occurs
when it fills up.

• Swap space on the disk is another limited resource. In fact,
almost every table in the OS represents a finite resource.

• If deadlocks could be eliminated for free, there would not
be much discussion.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.19

Deadlock Prevention

• Having seen that deadlock avoidance is essentially
impossible, because it requires information about future
requests, which is not known, how do real systems avoid
deadlock?

• If we can ensure that at least one of the four following
conditions is never satisfied, then deadlocks will be
structurally impossible.

• The various approaches to deadlock prevention are
summarized in Fig. 9.

Figure: Summary of approaches, to deadlock prevention.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.20

Mutual Exclusion

• Attacking the Mutual Exclusion Condition ; Can a given
resource be assigned to more than one process at once?
Systems with only simultaneously shared resources
cannot deadlock!

• The mutual-exclusion condition must hold for nonsharable
resources (i.e., a printer).

• Shareable resources, in contrast, do not require mutually
exclusive access and thus cannot be involved in a
deadlock (i.e.,read-only files). A process never needs to
wait for a shareable resource.

• In general, however, we cannot prevent deadlocks by
denying the mutual-exclusion condition, because some
resources are intrinsically nonsharable.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.21

Hold and Wait

• Attacking the Hold and Wait Condition ; Can a process
hold a resource and ask for another? Can we require
processes to request all resources at once?

• Most processes do not statically know about the resources
they need.

• One protocol that can be used requires each process to
request and be allocated all its resources before it begins
execution.

• An alternative protocol allows a process to request
resources only when it has none.

• A process may request some resources and use them.
Before it can request any additional resources, however, it
must release all the resources that it is currently allocated.

• Consider a process that copies data from a DVD drive to a
file on disk, sorts the file, and then prints the results to a
printer.

• Both these protocols have two main disadvantages.
• First, resource utilization may be low, since resources may

be allocated but unused for a long period.
• Second, starvation is possible (wait indefinitely).



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.22

No Preemption

• Attacking the No Preemption Condition ; Can resources
be preempted?

• If a process’ requests (holding certain resources) is
denied, that process must release its unused resources
and request them again, together with the additional
resource.

• To ensure that this condition does not hold, we can use the
following protocol.

• If a process is holding some resources and requests
another resource that cannot be immediately allocated to it
(that is, the process must wait), then all resources currently
being held are preempted.

• The preempted resources are added to the list of resources
for which the process is waiting.

• The process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.23

Circular Wait

• Attacking the Circular Wait Condition ; Can circular
waits exist?

• Order resources by an index:R1, R2, . . .; requires that
resources are always requested in order.

• One way to ensure that this condition never holds is to
impose a total ordering of all resource types and to require
that each process requests resources in an increasing
order of enumeration.

• Assign to each resource type a unique integer number,
which allows us to compare two resources and to
determine whether one precedes another in our ordering.

• Each process can request resources only in an
increasing order of enumeration.

• If these two protocols are used, then the circular-wait
condition cannot hold.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.24

Deadlock Avoidance I

• Possible side effects of preventing deadlocks are low
device utilization and reduced system throughput.

• An alternative method for avoiding deadlocks is to require
additional information about how resources are to be
requested.

• For example, in a system with one tape drive and one
printer,

• the system might need to know that process P will request
first the tape drive

• and then the printer before releasing both resources,
• whereas process Q will request first the printer
• and then the tape drive.

• With this knowledge of the complete sequence of requests
and releases for each process, the system can decide for
each request whether or not the process should wait in
order to avoid a possible future deadlock.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.25

Deadlock Avoidance II

• Each request requires that in making this decision the
system consider

• the resources currently available,
• the resources currently allocated to each process,
• the future requests and releases of each process.

• The simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.

• A deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that a circular-wait
condition can never exist.

• The resource-allocation state is defined by the number of
available and allocated resources and the maximum
demands of the processes.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.26

Safe State I

• A state is safe if the system can allocate resources to
each process (up to its maximum) in some order and still
avoid a deadlock.

• More formally, a system is in a safe state only if there
exists a safe sequence .

• A sequence of processes < P1, P2, . . . , Pn > is a safe
sequence for the current allocation state if, for each Pi the
resource requests that Pi can still make can be satisfied by
the currently available resources plus the resources held by
all Pj , with j < i .

• In this situation, if the resources that Pi needs are not
immediately available, then Pi can wait until all Pj have
finished.

• When they have finished, Pi can obtain all of its needed
resources, complete its designated task, return its allocated
resources, and terminate.

• When Pi terminates, Pi+1 can obtain its needed resources,
and so on.

• If no such sequence exists, then the system state is said to
be unsafe .



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.27

Safe State II

• A safe state is not a deadlocked state. Conversely, a
deadlocked state is an unsafe state. Not all unsafe states
are deadlocks, however (see Fig. 10).

Figure: Safe, unsafe, and deadlock state spaces.

• An unsafe state may lead to a deadlock.
• The difference between a safe state and an unsafe state is

that from a safe state the system can guarantee that all
processes will finish; from an unsafe state, no such
guarantee can be given.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.28

Safe State III

• To illustrate, we consider a system with 12 magnetic tape
drives and three processes: P0, P1, and P2 .

Pi Maximum Needs Current Needs
P0 10 5
P1 4 2
P2 9 2

• At time t0, the system is in a safe state. The sequence
< P1, P0, P2 > satisfies the safety condition.

• A system can go from a safe state to an unsafe state.
Suppose that, at time t1, process P2 requests and is
allocated one more tape drive. The system is no longer in
a safe state.

• Our mistake was in granting the request from process P2

for one more tape drive.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.29

Safe State IV

A

B

C

3

2

2

9

4

7

Free: 3
(a)

A

B

C

3

4

2

9

4

7

Free: 1
(b)

A

B

C

3

0 ––

2

9

7

Free: 5
(c)

A

B

C

3

0

7

9

7

Free: 0
(d)

–

A

B

C

3

0

0

9

–

Free: 7
(e)

Has Max Has Max Has Max Has Max Has Max

A

B

C

3

2

2

9

4

7

Free: 3
(a)

A

B

C

4

2

2

9

4

7

Free: 2
(b)

A

B

C

4

4 —4

2

9

7

Free: 0
(c)

A

B

C

4

—

2

9

7

Free: 4
(d)

Has Max Has Max Has Max Has Max

Figure: Demonstration that the state in is safe (Upper), is not safe
(Lower).



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.30

Safe State V

• Given the concept of a safe state, we can define
avoidance algorithms that ensure that the system will
never deadlock.

• The idea is simply to ensure that the system will always
remain in a safe state.

• Initially, the system is in a safe state.
• Whenever a process requests a resource that is currently

available, the system must decide whether the resource can
be allocated immediately or whether the process must wait.

• The request is granted only if the allocation leaves the
system in a safe state.

• In this scheme, if a process requests a resource that is
currently available, it may still have to wait.

• Thus, resource utilization may be lower than it would
otherwise be.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.31

Deadlock Detection

• If a system does not employ either a deadlock-prevention
or a deadlock-avoidance algorithm then a deadlock
situation may occur.

• In this environment, the system must provide:
• An algorithm that examines the state of the system to

determine whether a deadlock has occurred.
• An algorithm to recover from the deadlock.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.32

Single Instance of Each Resource Type I
• A wait-for graph.
• This graph is obtained from the resource-allocation graph

by removing the resource nodes and collapsing the
appropriate edges.

• For example, in Fig. 12, a resource-allocation graph and
the corresponding wait-for graph are presented.

Figure: (a) Resource-allocation graph. (b) Corresponding
wait-for graph.

• As before, a deadlock exists in the system if and only if the
wait-for graph contains a cycle.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.33

Single Instance of Each Resource Type II

• To detect deadlocks, the system needs to maintain the
wait-for graph and periodically invoke an algorithm that
searches for a cycle in the graph.

• If this graph contains one or more cycles (knots), a
deadlock exists.

• Any process that is part of a cycle is deadlocked.

• If no cycles exist, the system is not deadlocked.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.34

Single Instance of Each Resource Type III

R

S T T

U V U V

W

C D E D E

GG

A

F

B

(a) (b)

Figure: (a) A resource graph. (b) A cycle extracted from (a).

• Consider a system with seven processes, A though G, and
six resources, R through W .

• The state of which resources are known and the the
resource graph is given in Fig. 13.

• The question is: “Is this system deadlocked, and if so,
which processes are involved?”



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.35

Detection-Algorithm Usage

• When should we invoke the detection algorithm? The
answer depends on two factors:

• How often is a deadlock likely to occur?
• How many processes will be affected by deadlock when it

happens?

• If deadlocks occur frequently, then the detection algorithm
should be invoked frequently.

• Resources allocated to deadlocked processes will be idle
until the deadlock can be broken.

• In the extreme, we can invoke the deadlock-detection
algorithm every time a request for allocation cannot be
granted immediately (considerable overhead).

• A less expensive alternative is simply to invoke the
algorithm at less frequent intervals -for example, once per
hour or whenever CPU utilization drops below 40 percent.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.36

Recovery From Deadlock

• When a detection algorithm determines that a deadlock
exists, several alternatives are available.

• One possibility is to inform the operator that a deadlock
has occurred and to let the operator deal with the deadlock
manually.

• Another possibility is to let the system recover from the
deadlock automatically.

• There are two options for breaking a deadlock.
• One is simply to abort one or more processes to break the

circular wait.
• The other is to preempt some resources from one or more

of the deadlocked processes.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.37

Process Termination

• Abort all deadlocked processes .

• Abort one process at a time until the deadlock cycle is
eliminated . This method incurs considerable overhead,
since, after each process is aborted, a deadlock-detection
algorithm must be invoked.

• Aborting a process may not be easy. If the process was in
the midst of updating a file, terminating it will leave that file
in an incorrect state.

• If the partial termination method is used, then we must
determine which deadlocked process (or processes)
should be terminated.

• We should abort those processes whose termination will
incur the minimum cost.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.38

Resource Preemption

• Preempt some resources from processes and give these
resources to other processes until the deadlock cycle
is broken.

• In some cases it may be possible to temporarily take a
resource away from its current owner and give it to another
process.

1 Selecting a victim . Which resources and which processes
are to be preempted? (minimum cost).

2 Rollback . If we preempt a resource from a process, what
should be done with that process?

• Checkpointing; means that its state is written to a file so that it
can be restarted later.

• Since, in general, it is difficult to determine what a safe state
is, the simplest solution is a total rollback: Abort the process
and then restart it.

• Although it is more effective to roll back the process only as
far as necessary to break the deadlock, this method requires
the system to keep more information about the state of all
running processes.

3 Starvation . How do we ensure that starvation will not
occur? That is, how can we guarantee that resources will
not always be preempted from the same process?



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.39

Background I

• Memory is central to the operation of a modern computer
system.

• The part of the OS that manages the memory hierarchy is
called the memory manager .

• to keep track of which parts of memory are in use and which
parts are not in use,

• to allocate memory to processes when they need it and
deallocate it when they are done,

• to manage swapping between main memory and disk when
main memory is too small to hold all the processes.

• Memory management systems can be divided into two
classes:

1 Those that move processes back and forth between main
memory and disk during execution (swapping and paging),
(Memory Abstraction)

2 Those that do not. Simpler. (No Memory Abstraction)



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.40

Background II

• The CPU fetches instructions from memory according to
the value of the program counter.

• The memory unit sees only a stream of memory
addresses;

• It does not know how they are generated (by the
instruction counter, indexing, indirection, literal addresses,
and so on) or what they are for (instructions or data).

• Accordingly, we can ignore how a program generates a
memory address.

• We are interested only in the sequence of memory
addresses generated by the running program.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.41

Basic Hardware I

• Main memory and the registers built into the processor
itself are the only storage that the CPU can
access directly.

• Registers that are built into the CPU are generally
accessible within one cycle of the CPU clock.

• The same cannot be said of main memory, which is
accessed via a transaction on the memory bus.

• Memory access may take many cycles of the CPU clock to
complete (processor stalls).

• The remedy is to add fast memory between the CPU and
main memory (cache memory).



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.42

Basic Hardware II

• Not only we are concerned with the relative speed of
accessing physical memory, but we also must ensure

• correct operation has to protect the OS from access by
user processes

• and, in addition, to protect user processes from one
another.

• This protection must be provided by the CPU hardware.

• Compare every address generated in user mode with
the registers .

• We first need to make sure that each process has a
separate memory space.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.43

Basic Hardware III

• We can provide this protection by using two registers,
usually a base and a limit , as illustrated in Fig. 14.

• The base register holds the smallest legal physical
memory address;

• The limit register specifies the size of the range.
• For example, if the base register holds 300040 and limit

register is 120900, then the program can legally access all
addresses from 300040 through 420940 (inclusive).

Figure: A base and a limit register define a logical address space.



Deadlock & Main
Memory I

Dr. Cem Özdo ğan

Deadlocks
System Model

Deadlock Characterization

Necessary Conditions

Resource-Allocation
Graph

Methods for Handling
Deadlocks

Deadlock Prevention

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

Deadlock Avoidance

Safe State

Deadlock Detection

Single Instance of Each
Resource Type

Detection-Algorithm Usage

Recovery From Deadlock

Process Termination

Resource Preemption

Main memory
Background

Basic Hardware

8.44

Basic Hardware IV

• Any attempt by a program executing in user mode to
access operating-system memory or other users’ memory
results in a trap to the OS, which treats the attempt as a
fatal error (see Fig. 15).

Figure: Hardware address protection with base and limit registers.

• This scheme prevents a user program from (accidentally
or deliberately) modifying the code or data structures of
either the OS or other users.


	Deadlocks
	System Model
	Deadlock Characterization
	Methods for Handling Deadlocks
	Deadlock Prevention
	Deadlock Avoidance
	Deadlock Detection
	Recovery From Deadlock

	Main memory
	Background


