
CENG328
Operating Systems

Laboratory VIII
Interprocess Communications



2Cankaya University
Department of Computer Engineering

2011

1. Interprocess Communications

● We discuss five types of interprocess communication:

● Shared memory permits processes to communicate by simply reading and writing to a 
specified memory location. (We already discussed.)

● Mapped memory is similar to shared memory, except that it is associated with a file in 
the filesystem. (We will not discuss.)

● Pipes permit sequential communication from one process to a related process.

● FIFOs are similar to pipes, except that unrelated processes can communicate because 
the pipe is given a name in the filesystem.

● Sockets support communication between unrelated processes even on different 
computers.



3Cankaya University
Department of Computer Engineering

2011

1. Interprocess Communications

● Pipe; code40.c

● A fork spawns a child process.
● The child inherits the pipe file descriptors.
● The parent writes a string to the pipe, and the child reads it out.
● The program converts these file descriptors into FILE* streams using fdopen.
● Why fflush is used in the function writer?

● Another example for pipe; code41.c and code42.c

● One process sends a set of letters by means of writing to pipe.
● Other process reads this input from pipe and reports the number of lowercase and 

uppercase characters in this set.
● You should supply an argument to seed the random number generator.
● Execute several times by changing the seed each time.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code40.c
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code41.c
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code42.c


4Cankaya University
Department of Computer Engineering

2011

1. Interprocess Communications

● A first-in, first-out (FIFO) file is a pipe that has a name in the filesystem.

● Any process can open or close the FIFO; the processes on either end of the pipe need 
not be related to each other.

● FIFOs are also called named pipes.

● You can make a FIFO using the mkfifo command:
mkfifo /tmp/fifo
ls -l /tmp/fifo

● The first character of the output from ls is p, indicating that this file is actually a FIFO.

● In one window, read from the FIFO by invoking the following:
cat < /tmp/fifo

● In a second window, write to the FIFO by invoking this:
cat > /tmp/fifo

● Then type in some lines of text. Each time you press Enter, the line of text is sent 
through the FIFO and appears in the first window.

● Close the FIFO by pressing CTRL + D in the second window.

● Remove the FIFO with this line:
rm /tmp/fifo



5Cankaya University
Department of Computer Engineering

2011

1. Interprocess Communications

● Creating a FIFO; create a FIFO programmatically using the mkfifo function. Include 
sys/types.h and sys/stat.h if you call mkfifo.

– Accessing a FIFO; access a FIFO just like an ordinary file. To communicate through a 
FIFO, one program must open it for writing, and another program must open it for 
reading.

● To write a buffer of data to a FIFO using low-level I/O routines, you could use 
this code:
int fd = open (fifo_path, O_WRONLY);
write (fd, data, data_length);
close (fd);

● To read a string from the FIFO using C library I/O functions, you could use this 
code:
FILE* fifo = fopen (fifo_path, "r");
fscanf (fifo, "%s", buffer);
fclose (fifo);

● Write a program that creates a FIFO and access to that FIFO.



6Cankaya University
Department of Computer Engineering

2011

1. Interprocess Communications

● Sockets are more flexible than previously discussed communication techniques. These are 
the system calls involving sockets:

● socket - Creates a socket
● close - Destroys a socket
● connect - Creates a connection between two sockets
● bind - Labels a server socket with an address
● listen - Configures a socket to accept conditions
● accept - Accepts a connection and creates a new socket for the connection.



7Cankaya University
Department of Computer Engineering

2011

1. Interprocess Communications

● Sockets are represented by file descriptors. Using Local Namespace Sockets (we also have 
network sockets):

● Two programs; the server program code43.c creates a local namespace socket and 
listens for connections on it.

– When it receives a connection, it reads text messages from the connection and 
prints them until the connection closes.

– If one of these messages is "quit", the server program removes the socket and ends.

– The socket-server program takes the path to the socket as its command-line 
argument.

● The client program code44.c connects to a local namespace socket and sends a message. 
The name path to the socket and the message are specified on the command line.

● List the files and see the socket during communication. The first character of the output 
from ls is s, indicating that this file is actually a socket.

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code43.c
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/code44.c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

