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Computer Engineering Department

Çankaya University



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan
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5.3

MPI: the Message Passing Interface I

• Many early generation commercial parallel computers
were based on the message-passing architecture due to
its lower cost relative to shared-address-space
architectures.

• Message-passing became the modern-age form of
assembly language, in which every hardware vendor
provided its own library.

• Performed very well on its own hardware, but was
incompatible with the parallel computers offered by other
vendors.

• Many of the differences between the various
vendor-specific message-passing libraries were only
syntactic.

• However, often enough there were some serious semantic
differences that required significant re-engineering to port
a message-passing program from one library to another.

• The message-passing interface (MPI) was created to
essentially solve this problem.
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5.4

MPI: the Message Passing Interface II

• MPI defines
• a standard library for message-passing,
• can be used to develop portable message-passing

programs.

• The MPI standard defines both the syntax as well as the
semantics of a core set of library routines.

• The MPI library contains over 125 routines, but the
number of key concepts is much smaller.

• In fact, it is possible to write fully-functional
message-passing programs by using only six routines
(see table 1).

Table: The minimal set of MPI routines.

MPI_Init Initializes MPI
MPI_Finalize Terminates MPI
MPI_Comm_size Determines the number of processes
MPI_Comm_rank Determines the label of the calling process
MPI_Send Sends a message
MPI_Recv Receives a message



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan
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5.5

Starting and Terminating the MPI Library

• MPI_Init is called prior to any calls to other MPI routines.
• Its purpose is to initialize the mpi environment.
• Calling MPI_Init more than once during the execution of a

program will lead to an error.

• MPI_Finalize is called at the end of the computation.
• It performs various clean-up tasks to terminate the MPI

environment.
• No MPI calls may be performed after MPI_Finalize has

been called, not even MPI_Init.

• Upon successful execution, MPI_Init and MPI_Finalize
return MPI_SUCCESS; otherwise they return an
implementation-defined error code.
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5.6

Communicators I

• A key concept used throughout MPI is that of the
communication domain.

• A communication domain is a set of processes that are
allowed to communicate with each other.

• Information about communication domains is stored in
variables of type MPI_Comm, that are called
communicators.

• These communicators are used as arguments to all
message transfer MPI routines.

• They uniquely identify the processes participating in the
message transfer operation.
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5.7

Communicators II

• In general, all the processes may need to communicate
with each other.

• For this reason, MPI defines a default communicator
called MPI_COMM_WORLD which includes all the
processes involved.

• However, in many cases we want to perform
communication only within (possibly overlapping) groups
of processes.

• By using a different communicator for each such group, we
can ensure that no messages will ever interfere with
messages destined to any other group.
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5.8

Getting Information I

• MPI_Comm_size function =⇒ number of processes

• MPI_Comm_rank function =⇒ label of the calling process

• The calling sequences of these routines are as follows:

int MPI_Comm_size(MPI_Comm comm, int *size)
int MPI_Comm_rank(MPI_Comm comm, int *rank)

• Note that each process that calls either one of these
functions must belong in the supplied communicator,
otherwise an error will occur.

• The function MPI_Comm_size returns in the variable size
the number of processes that belong to the communicator
comm.

• So, when there is a single process per processor, the call

MPI_Comm_size(MPI_COMM_WORLD, &size)

will return in size the number of processors used by the
program.
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MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.9

Getting Information II

• Every process that belongs to a communicator is uniquely
identified by its rank.

• The rank of a process is an integer that ranges from zero
up to the size of the communicator minus one.

• A process can determine its rank in a communicator by
calling

MPI_Comm_rank(MPI_COMM_WORLD, &rank)

that takes two arguments:
1 the communicator,
2 an integer variable rank.

• Up on return, the variable rank stores the rank of the
process.
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5.10

Sending and Receiving Messages I

• The basic functions for sending and receiving messages in
MPI are the MPI_Send and MPI_Recv , respectively.

• The calling sequences of these routines are as follows:

int MPI_Send(void *buf, int count,
MPI_Datatype datatype,
int dest, int tag,
MPI_Comm comm)

int MPI_Recv(void *buf, int count,
MPI_Datatype datatype,
int source, int tag,
MPI_Comm comm,
MPI_Status *status)

• MPI_Send sends the data stored in the buffer pointed by
buf.

• This buffer consists of consecutive entries of the type
specified by the parameter datatype.

• The number of entries in the buffer is given by the
parameter count.
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5.11

Sending and Receiving Messages II

Table: Correspondence between the datatypes supported by MPI and
those supported by C.

MPI Datatype C Datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE
MPI_PACKED

Note that for all C datatypes, an equivalent MPI datatype is
provided.
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5.12

Sending and Receiving Messages III

• MPI allows two additional datatypes that are not part of the
C language.

• These are MPI_BYTE and MPI_PACKED.
• MPI_BYTE corresponds to a byte (8 bits)
• MPI_PACKED corresponds to a collection of data items that

has been created by packing non-contiguous data.

• Note that the length of the message in MPI_Send , as well
as in other MPI routines, is specified in terms of the
number of entries being sent and not in terms of the
number of bytes.

• Specifying the length in terms of the number of entries has
the advantage of making the MPI code portable,

• since the number of bytes used to store various datatypes
can be different for different architectures.
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5.13

Sending and Receiving Messages IV

• The destination of the message sent by MPI_Send is
uniquely specified by

• dest argument. This argument is the rank of the destination
process in the communication domain specified by the
communicator comm.

• comm argument.

• Each message has an integer-valued tag associated with
it.

• This is used to distinguish different types of messages.

• The message-tag can take values ranging from zero up to
the MPI defined constant MPI_TAG_UB (implementation
specific, at least 32767).
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5.14

Sending and Receiving Messages V

• MPI_Recv receives a message sent by a process whose
rank is given by the source in the communication domain
specified by the comm argument.

• The tag of the sent message must be that specified by the
tag argument.

• If there are many messages with identical tag from the
same process, then any one of these messages is
received.

• MPI allows specification of wild card arguments for both
source and tag.

• If source is set to MPI_ANY_SOURCE, then any process of
the communication domain can be the source of the
message.

• Similarly, if tag is set to MPI_ANY_TAG, then messages
with any tag are accepted.
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5.15

Sending and Receiving Messages VI

• The received message is stored in continuous locations in
the buffer pointed to by buf.

• The count and datatype arguments of MPI_Recv are used
to specify the length of the supplied buffer.

• The received message should be of length equal to or less
than this length.

• This allows the receiving process to not know the exact
size of the message being sent.

• If the received message is larger than the supplied buffer,
then an overflow error will occur, and the routine will return
the error MPI_ERR_TRUNCATE.
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MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.16

Sending and Receiving Messages VII

• After a message has been received, the status variable
can be used to get information about the MPI_Recv
operation.

• In C, status is stored using the MPI_Status data-structure.

• This is implemented as a structure with three fields, as
follows:

typedef struct MPI_Status {
int MPI_SOURCE;
int MPI_TAG;
int MPI_ERROR;

};

• MPI_SOURCE and MPI_TAG store the source and the tag
of the received message.

• They are particularly useful when MPI_ANY_SOURCE
and MPI_ANY_TAG are used for the source and tag
arguments.

• MPI_ERROR stores the error-code of the received
message.
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MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.17

Sending and Receiving Messages VIII

• The status argument also returns information about the
length of the received message.

• This information is not directly accessible from the status
variable, but it can be retrieved by calling the
MPI_Get_count function.

• The calling sequence:

int MPI_Get_count(MPI_Status *status,
MPI_Datatype datatype,
int *count)

• MPI_Get_count takes as arguments the status returned
by MPI_Recv and the type of the received data in
datatype, and returns the number of entries that were
actually received in the count variable.
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5.18

Sending and Receiving Messages IX

• The MPI_Recv returns only after the requested message
has been received and copied into the buffer.

• That is, MPI_Recv is a blocking receive operation.

• However, MPI allows two different implementations for
MPI_Send .

1 MPI_Send returns only after the corresponding MPI_Recv
have been issued and the message has been sent to the
receiver.

2 MPI_Send first copies the message into a buffer and then
returns, without waiting for the corresponding MPI_Recv
to be executed.

• In either implementation, the buffer that is pointed by the
buf argument of MPI_Send can be safely reused and
overwritten.
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5.19

Sending and Receiving Messages X

• MPI programs must be able to run correctly regardless of
which of the two methods is used for implementing
MPI_Send .

• Such programs are called safe.

• In writing safe MPI programs, sometimes it is helpful to
forget about the alternate implementation of MPI_Send
and just think of it as being a blocking send operation.
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5.20

Avoiding Deadlocks I

• The semantics of MPI_Send and MPI_Recv place some
restrictions on how we can mix and match send and
receive operations.

• Consider the following not complete code in which process
0 sends two messages with different tags to process 1,
and process 1 receives them in the reverse order.
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5.21

Avoiding Deadlocks II

• If MPI_Send is implemented using buffering, then this
code will run correctly (if sufficient buffer space is
available).

• However, if MPI_Send is implemented by blocking until the
matching receive has been issued, then neither of the two
processes will be able to proceed.

• This code fragment is not safe, as its behavior is
implementation dependent.

• It is up to the programmer to ensure that his or her
program will run correctly on any MPI implementation.

• The problem in this program can be corrected by matching
the order in which the send and receive operations are
issued.

• Similar deadlock situations can also occur when a process
sends a message to itself.
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5.22

Avoiding Deadlocks III

• Improper use of MPI_Send and MPI_Recv can also lead
to deadlocks in situations when each processor needs to
send and receive a message in a circular fashion.

• Consider the following not complete code, in which
• process i sends a message to process i + 1 (modulo the

number of processes),
• process i receives a message from process i − 1 (module

the number of processes).
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5.23

Avoiding Deadlocks IV

• When MPI_Send is implemented using buffering, the
program will work correctly,

• since every call to MPI_Send will get buffered, allowing the
call of the MPI_Recv to be performed, which will transfer
the required data.

• However, if MPI_Send blocks until the matching receive
has been issued,

• all processes will enter an infinite wait state, waiting for the
neighbouring process to issue a MPI_Recv operation.

• Note that the deadlock still remains even when we have
only two processes.

• Thus, when pairs of processes need to exchange data, the
above method leads to an unsafe program.
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5.24

Avoiding Deadlocks V

• The above example can be made safe, by rewriting it as
follows:

• This new implementation partitions the processes into two
groups.

• One consists of the odd-numbered processes and the
other of the even-numbered processes.
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5.25

Sending and Receiving Messages Simultaneously I

• The above communication pattern appears frequently in
many message-passing programs,

• For this reason MPI provides the MPI_Sendrecv function
that both sends and receives a message.

• MPI_Sendrecv does not suffer from the circular deadlock
problems of MPI_Send and MPI_Recv .

• You can think of MPI_Sendrecv as allowing data to travel
for both send and receive simultaneously.

• The calling sequence of MPI_Sendrecv is as the
following:
int MPI_Sendrecv(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, int dest,
int sendtag,

void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, int source,

int recvtag, MPI_Comm comm,
MPI_Status *status)

• The arguments of MPI_Sendrecv are essentially the
combination of the arguments of MPI_Send and
MPI_Recv .
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5.26

Sending and Receiving Messages Simultaneously II

• The send and receive buffers must be disjoint, and the
source and destination of the messages can be the same
or different.

• The safe version of our previous example using
MPI_Sendrecv is as the following;

1 int a[10], b[10], npes, myrank;
2 MPI_Status status;
3 ...
4 MPI_Comm_size(MPI_COMM_WORLD, &npes);
5 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
6 MPI_SendRecv(a, 10, MPI_INT, (myrank+1)%npes, 1,
7 b, 10, MPI_INT, (myrank-1+npes)%npes, 1,
8 MPI_COMM_WORLD, &status);
9 ...
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5.27

Sending and Receiving Messages Simultaneously III

• In many programs, the requirement for the send and
receive buffers of MPI_Sendrecv be disjoint may force us
to use a temporary buffer.

• This increases the amount of memory required by the
program and also increases the overall run time due to the
extra copy.

• This problem can be solved by using that
MPI_Sendrecv_replace MPI function.

• This function performs a blocking send and receive, but it
uses a single buffer for both the send and receive
operation.

• That is, the received data replaces the data that was sent
out of the buffer.
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