
Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.1

Lecture 5
Programming Using the
Message-Passing Paradigm II
MPI: the Message Passing Interface; Unicast

Ceng471 Parallel Computing at November 25, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.2

Contents

1 MPI: the Message Passing Interface
Starting and Terminating the MPI Library
Communicators
Getting Information
Sending and Receiving Messages
Avoiding Deadlocks
Sending and Receiving Messages Simultaneously



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.3

MPI: the Message Passing Interface I

• Many early generation commercial parallel computers
were based on the message-passing architecture due to
its lower cost relative to shared-address-space
architectures.

• Message-passing became the modern-age form of
assembly language, in which every hardware vendor
provided its own library.

• Performed very well on its own hardware, but was
incompatible with the parallel computers offered by other
vendors.

• Many of the differences between the various
vendor-specific message-passing libraries were only
syntactic.

• However, often enough there were some serious semantic
differences that required significant re-engineering to port
a message-passing program from one library to another.

• The message-passing interface (MPI) was created to
essentially solve this problem.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.4

MPI: the Message Passing Interface II

• MPI defines
• a standard library for message-passing,
• can be used to develop portable message-passing

programs.

• The MPI standard defines both the syntax as well as the
semantics of a core set of library routines.

• The MPI library contains over 125 routines, but the
number of key concepts is much smaller.

• In fact, it is possible to write fully-functional
message-passing programs by using only six routines
(see table 1).

Table: The minimal set of MPI routines.

MPI_Init Initializes MPI
MPI_Finalize Terminates MPI
MPI_Comm_size Determines the number of processes
MPI_Comm_rank Determines the label of the calling process
MPI_Send Sends a message
MPI_Recv Receives a message



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.5

Starting and Terminating the MPI Library

• MPI_Init is called prior to any calls to other MPI routines.
• Its purpose is to initialize the mpi environment.
• Calling MPI_Init more than once during the execution of a

program will lead to an error.

• MPI_Finalize is called at the end of the computation.
• It performs various clean-up tasks to terminate the MPI

environment.
• No MPI calls may be performed after MPI_Finalize has

been called, not even MPI_Init.

• Upon successful execution, MPI_Init and MPI_Finalize
return MPI_SUCCESS; otherwise they return an
implementation-defined error code.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.6

Communicators I

• A key concept used throughout MPI is that of the
communication domain.

• A communication domain is a set of processes that are
allowed to communicate with each other.

• Information about communication domains is stored in
variables of type MPI_Comm, that are called
communicators.

• These communicators are used as arguments to all
message transfer MPI routines.

• They uniquely identify the processes participating in the
message transfer operation.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.7

Communicators II

• In general, all the processes may need to communicate
with each other.

• For this reason, MPI defines a default communicator
called MPI_COMM_WORLD which includes all the
processes involved.

• However, in many cases we want to perform
communication only within (possibly overlapping) groups
of processes.

• By using a different communicator for each such group, we
can ensure that no messages will ever interfere with
messages destined to any other group.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.8

Getting Information I

• MPI_Comm_size function =⇒ number of processes

• MPI_Comm_rank function =⇒ label of the calling process

• The calling sequences of these routines are as follows:

int MPI_Comm_size(MPI_Comm comm, int *size)
int MPI_Comm_rank(MPI_Comm comm, int *rank)

• Note that each process that calls either one of these
functions must belong in the supplied communicator,
otherwise an error will occur.

• The function MPI_Comm_size returns in the variable size
the number of processes that belong to the communicator
comm.

• So, when there is a single process per processor, the call

MPI_Comm_size(MPI_COMM_WORLD, &size)

will return in size the number of processors used by the
program.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.9

Getting Information II

• Every process that belongs to a communicator is uniquely
identified by its rank.

• The rank of a process is an integer that ranges from zero
up to the size of the communicator minus one.

• A process can determine its rank in a communicator by
calling

MPI_Comm_rank(MPI_COMM_WORLD, &rank)

that takes two arguments:
1 the communicator,
2 an integer variable rank.

• Up on return, the variable rank stores the rank of the
process.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.10

Sending and Receiving Messages I

• The basic functions for sending and receiving messages in
MPI are the MPI_Send and MPI_Recv , respectively.

• The calling sequences of these routines are as follows:

int MPI_Send(void *buf, int count,
MPI_Datatype datatype,
int dest, int tag,
MPI_Comm comm)

int MPI_Recv(void *buf, int count,
MPI_Datatype datatype,
int source, int tag,
MPI_Comm comm,
MPI_Status *status)

• MPI_Send sends the data stored in the buffer pointed by
buf.

• This buffer consists of consecutive entries of the type
specified by the parameter datatype.

• The number of entries in the buffer is given by the
parameter count.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.11

Sending and Receiving Messages II

Table: Correspondence between the datatypes supported by MPI and
those supported by C.

MPI Datatype C Datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE
MPI_PACKED

Note that for all C datatypes, an equivalent MPI datatype is
provided.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.12

Sending and Receiving Messages III

• MPI allows two additional datatypes that are not part of the
C language.

• These are MPI_BYTE and MPI_PACKED.
• MPI_BYTE corresponds to a byte (8 bits)
• MPI_PACKED corresponds to a collection of data items that

has been created by packing non-contiguous data.

• Note that the length of the message in MPI_Send , as well
as in other MPI routines, is specified in terms of the
number of entries being sent and not in terms of the
number of bytes.

• Specifying the length in terms of the number of entries has
the advantage of making the MPI code portable,

• since the number of bytes used to store various datatypes
can be different for different architectures.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.13

Sending and Receiving Messages IV

• The destination of the message sent by MPI_Send is
uniquely specified by

• dest argument. This argument is the rank of the destination
process in the communication domain specified by the
communicator comm.

• comm argument.

• Each message has an integer-valued tag associated with
it.

• This is used to distinguish different types of messages.

• The message-tag can take values ranging from zero up to
the MPI defined constant MPI_TAG_UB (implementation
specific, at least 32767).



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.14

Sending and Receiving Messages V

• MPI_Recv receives a message sent by a process whose
rank is given by the source in the communication domain
specified by the comm argument.

• The tag of the sent message must be that specified by the
tag argument.

• If there are many messages with identical tag from the
same process, then any one of these messages is
received.

• MPI allows specification of wild card arguments for both
source and tag.

• If source is set to MPI_ANY_SOURCE, then any process of
the communication domain can be the source of the
message.

• Similarly, if tag is set to MPI_ANY_TAG, then messages
with any tag are accepted.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.15

Sending and Receiving Messages VI

• The received message is stored in continuous locations in
the buffer pointed to by buf.

• The count and datatype arguments of MPI_Recv are used
to specify the length of the supplied buffer.

• The received message should be of length equal to or less
than this length.

• This allows the receiving process to not know the exact
size of the message being sent.

• If the received message is larger than the supplied buffer,
then an overflow error will occur, and the routine will return
the error MPI_ERR_TRUNCATE.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.16

Sending and Receiving Messages VII

• After a message has been received, the status variable
can be used to get information about the MPI_Recv
operation.

• In C, status is stored using the MPI_Status data-structure.

• This is implemented as a structure with three fields, as
follows:

typedef struct MPI_Status {
int MPI_SOURCE;
int MPI_TAG;
int MPI_ERROR;

};

• MPI_SOURCE and MPI_TAG store the source and the tag
of the received message.

• They are particularly useful when MPI_ANY_SOURCE
and MPI_ANY_TAG are used for the source and tag
arguments.

• MPI_ERROR stores the error-code of the received
message.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.17

Sending and Receiving Messages VIII

• The status argument also returns information about the
length of the received message.

• This information is not directly accessible from the status
variable, but it can be retrieved by calling the
MPI_Get_count function.

• The calling sequence:

int MPI_Get_count(MPI_Status *status,
MPI_Datatype datatype,
int *count)

• MPI_Get_count takes as arguments the status returned
by MPI_Recv and the type of the received data in
datatype, and returns the number of entries that were
actually received in the count variable.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.18

Sending and Receiving Messages IX

• The MPI_Recv returns only after the requested message
has been received and copied into the buffer.

• That is, MPI_Recv is a blocking receive operation.

• However, MPI allows two different implementations for
MPI_Send .

1 MPI_Send returns only after the corresponding MPI_Recv
have been issued and the message has been sent to the
receiver.

2 MPI_Send first copies the message into a buffer and then
returns, without waiting for the corresponding MPI_Recv
to be executed.

• In either implementation, the buffer that is pointed by the
buf argument of MPI_Send can be safely reused and
overwritten.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.19

Sending and Receiving Messages X

• MPI programs must be able to run correctly regardless of
which of the two methods is used for implementing
MPI_Send .

• Such programs are called safe.

• In writing safe MPI programs, sometimes it is helpful to
forget about the alternate implementation of MPI_Send
and just think of it as being a blocking send operation.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.20

Avoiding Deadlocks I

• The semantics of MPI_Send and MPI_Recv place some
restrictions on how we can mix and match send and
receive operations.

• Consider the following not complete code in which process
0 sends two messages with different tags to process 1,
and process 1 receives them in the reverse order.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.21

Avoiding Deadlocks II

• If MPI_Send is implemented using buffering, then this
code will run correctly (if sufficient buffer space is
available).

• However, if MPI_Send is implemented by blocking until the
matching receive has been issued, then neither of the two
processes will be able to proceed.

• This code fragment is not safe, as its behavior is
implementation dependent.

• It is up to the programmer to ensure that his or her
program will run correctly on any MPI implementation.

• The problem in this program can be corrected by matching
the order in which the send and receive operations are
issued.

• Similar deadlock situations can also occur when a process
sends a message to itself.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.22

Avoiding Deadlocks III

• Improper use of MPI_Send and MPI_Recv can also lead
to deadlocks in situations when each processor needs to
send and receive a message in a circular fashion.

• Consider the following not complete code, in which
• process i sends a message to process i + 1 (modulo the

number of processes),
• process i receives a message from process i − 1 (module

the number of processes).



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.23

Avoiding Deadlocks IV

• When MPI_Send is implemented using buffering, the
program will work correctly,

• since every call to MPI_Send will get buffered, allowing the
call of the MPI_Recv to be performed, which will transfer
the required data.

• However, if MPI_Send blocks until the matching receive
has been issued,

• all processes will enter an infinite wait state, waiting for the
neighbouring process to issue a MPI_Recv operation.

• Note that the deadlock still remains even when we have
only two processes.

• Thus, when pairs of processes need to exchange data, the
above method leads to an unsafe program.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.24

Avoiding Deadlocks V

• The above example can be made safe, by rewriting it as
follows:

• This new implementation partitions the processes into two
groups.

• One consists of the odd-numbered processes and the
other of the even-numbered processes.



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.25

Sending and Receiving Messages Simultaneously I

• The above communication pattern appears frequently in
many message-passing programs,

• For this reason MPI provides the MPI_Sendrecv function
that both sends and receives a message.

• MPI_Sendrecv does not suffer from the circular deadlock
problems of MPI_Send and MPI_Recv .

• You can think of MPI_Sendrecv as allowing data to travel
for both send and receive simultaneously.

• The calling sequence of MPI_Sendrecv is as the
following:
int MPI_Sendrecv(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, int dest,
int sendtag,

void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, int source,

int recvtag, MPI_Comm comm,
MPI_Status *status)

• The arguments of MPI_Sendrecv are essentially the
combination of the arguments of MPI_Send and
MPI_Recv .



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.26

Sending and Receiving Messages Simultaneously II

• The send and receive buffers must be disjoint, and the
source and destination of the messages can be the same
or different.

• The safe version of our previous example using
MPI_Sendrecv is as the following;

1 int a[10], b[10], npes, myrank;
2 MPI_Status status;
3 ...
4 MPI_Comm_size(MPI_COMM_WORLD, &npes);
5 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
6 MPI_SendRecv(a, 10, MPI_INT, (myrank+1)%npes, 1,
7 b, 10, MPI_INT, (myrank-1+npes)%npes, 1,
8 MPI_COMM_WORLD, &status);
9 ...



Programming Using the
Message-Passing

Paradigm II

Dr. Cem Özdo ğan

MPI: the Message
Passing Interface
Starting and Terminating
the MPI Library

Communicators

Getting Information

Sending and Receiving
Messages

Avoiding Deadlocks

Sending and Receiving
Messages Simultaneously

5.27

Sending and Receiving Messages Simultaneously III

• In many programs, the requirement for the send and
receive buffers of MPI_Sendrecv be disjoint may force us
to use a temporary buffer.

• This increases the amount of memory required by the
program and also increases the overall run time due to the
extra copy.

• This problem can be solved by using that
MPI_Sendrecv_replace MPI function.

• This function performs a blocking send and receive, but it
uses a single buffer for both the send and receive
operation.

• That is, the received data replaces the data that was sent
out of the buffer.


	MPI: the Message Passing Interface
	Starting and Terminating the MPI Library
	Communicators
	Getting Information
	Sending and Receiving Messages
	Avoiding Deadlocks
	Sending and Receiving Messages Simultaneously


