
Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.1

Lecture 6
Programming Using the
Message-Passing Paradigm III
MPI: the Message Passing Interface; Overlapping, Multicast

Ceng471 Parallel Computing at December 02, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.2

Contents

1 Overlapping Communication with Computation
Non-Blocking Communication Operations

2 Collective Communication and Computation Operations
Broadcast
Reduction
Gather
Scatter
All-to-All

3 Groups and Communicators



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.3

Overlapping Communication with Computation

• The MPI programs we developed so far used blocking
send and receive operations whenever they needed to
perform point-to-point communication.

• Recall that a blocking send operation remains blocked until
the message has been copied out of the send buffer

• either into a system buffer at the source process
• or sent to the destination process.

• Similarly, a blocking receive operation returns only after
the message has been received and copied into the
receive buffer.

• It will be preferable if we can overlap the transmission of
the data with the computation .

• Since many recent distributed-memory parallel computers
have dedicated communication controllers,

• that can perform the transmission of messages without
interrupting the CPUs.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.4

Non-Blocking Communication Operations I

• In order to overlap communication with computation, MPI
provides a pair of functions for performing non-blocking
send and receive operations.

• MPI_Isend =⇒ starts a send operation but does not
complete , that is, it returns before the data is copied out of
the buffer.

• MPI_Irecv =⇒ starts a receive operation but returns before
the data has been received and copied into the buffer.

• With the support of appropriate hardware, the
transmission and reception of messages can proceed
concurrently with the computations.

• At a later point in the program , a process that has
started a non-blocking send or receive operation must
make sure that this operation has completed before it
proceeds with its computations.

• This is because a process that has started a non-blocking
send operation may want to

• overwrite the buffer that stores the data that are being sent,
• or a process that has started a non-blocking receive

operation may want to use the data.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.5

Non-Blocking Communication Operations II

• To check the completion of non-blocking send and receive
operations, MPI provides a pair of functions

1 MPI_Test =⇒ tests whether or not a non-blocking operation
has finished

2 MPI_Wait =⇒ waits (i.e., gets blocked) until a non-blocking
operation actually finishes.

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request *request)

• MPI_Isend and MPI_Irecv functions allocate a request
object and return a pointer to it in the request variable.

• This request object is used as an argument in the
MPI_Test and MPI_Wait functions to identify the operation
whose status we want to query or to wait for its completion.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.6

Non-Blocking Communication Operations III

• The MPI_Irecv function does not take a status argument
similar to the blocking receive function,

• but the status information associated with the receive
operation is returned by the MPI_Test and MPI_Wait
functions.

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)
int MPI_Wait(MPI_Request *request, MPI_Status *status)

• MPI_Test tests whether or not the non-blocking send or
receive operation identified by its request has finished.

• It returns flag = true (non-zero value in C) if it is completed.

• The request object pointed to by request is deallocated
and request is set to MPI_REQUEST_NULL.

• Also the status object is set to contain information about
the operation.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.7

Non-Blocking Communication Operations IV

• It returns flag = false (a zero value in C) if it is not
completed.

• The request is not modified and the value of the status
object is undefined.

• The MPI_Wait function blocks until the non-blocking
operation identified by request completes.

• For the cases that the programmer wants to explicitly
deallocate a request object, MPI provides the following
function.
int MPI_Request_free(MPI_Request *request)

• Note that the deallocation of the request object does not
have any effect on the associated non-blocking send or
receive operation.

• That is, if it has not yet completed it will proceed until its
completion.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.8

Non-Blocking Communication Operations V

• Hence, one must be careful before explicitly deallocating a
request object,

• since without it, we cannot check whether or not the
non-blocking operation has completed.

• A non-blocking communication operation can be matched
with a corresponding blocking operation.

• For example, a process can send a message using a
non-blocking send operation and this message can be
received by the other process using a blocking receive
operation.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.9

Non-Blocking Communication Operations VI
• Avoiding Deadlocks; by using non-blocking communication

operations we can remove most of the deadlocks
associated with their blocking counterparts.

• For example, the following piece of code is not safe.

1 int a[10], b[10], myrank;
2 MPI_Status status;
3 ...
4 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
5 if (myrank == 0) {
6 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
7 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);
8 }
9 else if (myrank == 1) {

10 MPI_Recv(b, 10, MPI_INT, 0, 2, &status,
MPI_COMM_WORLD);

11 MPI_Recv(a, 10, MPI_INT, 0, 1, &status,
MPI_COMM_WORLD);

12 }
13 ...

• However, if we replace either the send or receive
operations with their non-blocking counterparts, then the
code will be safe, and will correctly run on any MPI
implementation.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.10

Non-Blocking Communication Operations VII

• Safe with non-blocking communication operations;

1 int a[10], b[10], myrank;
2 MPI_Status status;
3 MPI_Request requests[2];
4 ...
5 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
6 if (myrank == 0) {
7 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
8 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);
9 }

10 else if (myrank == 1) {
11 MPI_Irecv(b, 10, MPI_INT, 0, 2, &requests[0],

MPI_COMM_WORLD);
12 MPI_Irecv(a, 10, MPI_INT, 0, 1, &requests[1],

MPI_COMM_WORLD);
13 } //Non-Blocking Communication Operations
14 ...

• This example also illustrates that the non-blocking
operations started by any process can finish in any order
depending on the transmission or reception of the
corresponding messages.

• For example, the second receive operation will finish
before the first does.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.11

Collective Communication and Computation Operations I

• MPI provides an extensive set of functions for performing
commonly used collective communication operations.

• All of the collective communication functions provided by
MPI take as an argument a communicator that defines the
group of processes that participate in the collective
operation.

• All the processes that belong to this communicator
participate in the operation,

• and all of them must call the collective communication
function.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.12

Collective Communication and Computation Operations II

• Even though collective communication operations do not
act like barriers,

• act like a virtual synchronization step.

• The parallel program should be written such that it
behaves correctly even if a global synchronization is
performed before and after the collective call.

• Barrier; the barrier synchronization operation is
performed in MPI using the MPI_Barrier function.

int MPI_Barrier(MPI_Comm comm)

• The only argument of MPI_Barrier is the communicator
that defines the group of processes that are synchronized.

• The call to MPI_Barrier returns only after all the
processes in the group have called this function.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.13

Broadcast I

• Broadcast; the one-to-all broadcast operation is
performed in MPI using the MPI_Bcast function.

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype,
int source, MPI_Comm comm)

• MPI_Bcast sends the data stored in the buffer buf of
process source to all the other processes in the group.

• The data that is broadcast consist of count entries of type
datatype.

• The data received by each process is stored in the buffer
buf.

• Since the operations are virtually synchronous, they
do not require tags.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.14

Broadcast II

Figure: Diagram for Broadcast.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.15

Reduction I

• Reduction ; the all-to-one reduction operation is performed
in MPI using the MPI_Reduce function.

int MPI_Reduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int target,
MPI_Comm comm)

• combines the elements stored in the buffer sendbuf of each
process in the group,

• using the operation specified in op,
• returns the combined values in the buffer recvbuf of the

process with rank target.

• Both the sendbuf and recvbuf must have the same
number of count items of type datatype.

• When count is more than one, then the combine operation
is applied element-wise on each entry of the sequence.

• Note that all processes must provide a recvbuf array, even
if they are not the target of the reduction operation.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.16

Reduction II

Figure: Diagram for Reduce.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.17

Reduction III

• MPI provides a list of predefined operations that can be
used to combine the elements stored in sendbuf (See
Table 1).

Table: Predefined reduction operations.

Operation Meaning Datatypes
MPI_MAX Maximum C integers and floating point
MPI_MIN Minimum C integers and floating point
MPI_SUM Sum C integers and floating point
MPI_PROD Product C integers and floating point
MPI_LAND Logical AND C integers
MPI_BAND Bit-wise AND C integers and byte
MPI_LOR Logical OR C integers
MPI_BOR Bit-wise OR C integers and byte
MPI_LXOR Logical XOR C integers
MPI_BXOR Bit-wise XOR C integers and byte
MPI_MAXLOC max-min value-location Data-pairs
MPI_MINLOC min-min value-location Data-pairs

• MPI also allows programmers to define their own
operations.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.18

Gather I

• Gather ; the all-to-one gather operation is performed in
MPI using the MPI_Gather function.

int MPI_Gather(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, int target, MPI_Comm comm)

• Each process, including the target process, sends the
data stored in the array sendbuf to the target process.

• As a result, the target process receives a total of p buffers
(p is the number of processors in the communication
comm).

• The data is stored in the array recvbuf of the target
process, in a rank order.

• That is, the data from process with rank i are stored in the
recvbuf starting at location i * sendcount (assuming that
the array recvbuf is of the same type as recvdatatype).



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.19

Gather II

• The data sent by each process must be of the same size
and type.

• That is, MPI_Gather must be called with the sendcount
and senddatatype arguments having the same
values at each process.

• The information about the receive buffer, its length and
type applies only for the target process and is ignored for
all the other processes.

• The argument recvcount specifies the number of elements
received by each process and not the total number of
elements it receives.

• So, recvcount must be the same as sendcount and their
datatypes must be matching.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.20

Gather III

Figure: Diagram for Gather.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.21

Gather IV

• MPI also provides the MPI_Allgather function in which the
data are gathered to all the processes and not only at the
target process.

int MPI_Allgather(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, MPI_Comm comm)

• The meanings of the various parameters are similar to
those for MPI_Gather ;

• however, each process must now supply a recvbuf array
that will store the gathered data.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.22

Gather V

Figure: Diagram for All_Gather.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.23

Gather VI

• In addition to the above versions of the gather operation,
in which the sizes of the arrays sent by each process are
the same, MPI also provides versions in which the
size of the arrays can be different.

• MPI refers to these operations as the vector variants.

int MPI_Gatherv(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf,
int *recvcounts, int *displs,
MPI_Datatype recvdatatype, int target, MPI_Comm comm)

int MPI_Allgatherv(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf,
int *recvcounts, int *displs, MPI_Datatype recvdatatype,
MPI_Comm comm)

• These functions allow a different number of data elements
to be sent by each process by replacing the recvcount
parameter with the array recvcounts.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.24

Scatter I

• Scatter ; the one-to-all scatter operation is performed in
MPI using the MPI_Scatter function.

int MPI_Scatter(void *sendbuf, int sendcount,
MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, int source, MPI_Comm comm)

• The source process sends a different part of the send
buffer sendbuf to each processes, including itself.

• The data that are received are stored in recvbuf.

• Process i receives sendcount contiguous elements of type
senddatatype starting from the i * sendcount location of
the sendbuf of the source process (assuming that sendbuf
is of the same type as senddatatype).

• Similarly to the gather operation, MPI provides a vector
variant of the scatter operation, called MPI_Scatterv , that
allows different amounts of data to be sent to different
processes.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.25

Scatter II

Figure: Diagram for Scatter.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.26

All-to-All I

• Alltoall ; the all-to-all communication operation is
performed in MPI by using the MPI_Alltoall function.
int MPI_Alltoall(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, void *recvbuf, int recvcount,
MPI_Datatype recvdatatype, MPI_Comm comm)

• Each process sends a different portion of the sendbuf
array to each other process, including itself.

• Each process sends to process i sendcount contiguous
elements of type senddatatype starting from the i *
sendcount location of its sendbuf array.

• The data that are received are stored in the recvbuf array.

• Each process receives from process i recvcount elements
of type recvdatatype and stores them in its recvbuf array
starting at location i * recvcount.

• MPI also provides a vector variant of the all-to-all
personalized communication operation called
MPI_Alltoallv that allows different amounts of data to be
sent.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.27

All-to-All II

Figure: Diagram for Alltoall.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.28

Groups and Communicators I

• In many parallel algorithms, communication operations
need to be restricted to certain subsets of processes.

• A general method for partitioning a graph of processes is
to use MPI_Comm_split that is defined as follows:

int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)

• This function is a collective operation, and thus needs to
be called by all the processes in the communicator comm.

• A new communicator for each subgroup is returned in the
newcomm parameter.

• The function takes color and key as input parameters in
addition to the communicator, and partitions the group of
processes in the communicator comm into disjoint
subgroups.

• Each subgroup contains all processes that have supplied
the same value for the color parameter.

• Within each subgroup, the processes are ranked in the
order defined by the value of the key parameter.



Programming Using the
Message-Passing

Paradigm III

Dr. Cem Özdo ğan

Overlapping
Communication with
Computation
Non-Blocking
Communication Operations

Collective
Communication and
Computation
Operations
Broadcast

Reduction

Gather

Scatter

All-to-All

Groups and
Communicators

6.29

Groups and Communicators II

• Figure 7 shows an example of splitting a communicator
using the MPI_Comm_split function.

• If each process called MPI_Comm_split using the values
of parameters color and key as shown in Fig 7, then three
communicators will be created, containing processes 0, 1,
2, 3, 4, 5, 6, and 7, respectively.

Figure: Using MPI_Comm_split to split a group of processes in a
communicator into subgroups.


	Overlapping Communication with Computation
	Non-Blocking Communication Operations

	Collective Communication and Computation Operations
	Broadcast
	Reduction
	Gather
	Scatter
	All-to-All

	Groups and Communicators

