
0.1 Additive Rules

• Theorem 2.10:
If A and B are any two events, then

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

• Corollary 1:

If A and B are mutually exclusive, then

P (A ∪ B) = P (A) + P (B)

Figure 1: Additive rule of probability.

• Corollary 2:

If A1, A2, . . . An, are mutually exclusive, then

P (A1 ∪ A2 ∪ . . . ∪ An) = P (A1) + P (A2) + . . . + P (An)

• Corollary 3:

If A1, A2, . . . An, , is a partition of a sample space S, then

P (A1 ∪ A2 ∪ . . . ∪ An) = P (A1) + P (A2) + . . . + P (An)

= P (S) = 1
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• Theorem 2.11: (an extension of Theorem 2.10)

For three events A, B, and C,

P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (A ∩ B) − P (A ∩ C)

−P (B ∩ C) + P (A ∩ B ∩ C)

• Theorem 2.12:
If A and A′ are complementary events, then

P (A) + P (A′) = 1

Proof : Since A ∪ A′ = S and A ∩ A′ = ∅, then

1 = P (S) = P (A ∪ A′) = P (A) + P (A′)

• Example 2.32: The probability that the production procedure meets
specification (2000 ± 10 mm) is known to be 0.99. Small cable is just
as likely to be defective as large cable.

– What is the probability that a cable selected randomly is too
large?
Let M be the event that a cable meets spec. Let S and L be the
events that the cable is too small and too large, respectively. Then

P (M) = 0.99 and P (S) = P (L) = (1 − 0.99)/2 = 0.0005

– What is the probability that a cable selected randomly is larger
than 1990 mm?

P (X ≥ 1990) = 1 − P (S) = 0.995

where X is the length of a randomly selected cable.

0.2 Conditional Probability

• Conditional probability: P (B|A)

– Sometimes the occurrence of an event is influenced or related with
some other event.

– Hence we must take this restriction or the availability of certain

limited information into consideration about the outcome of the
experiment.
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– The probability of an event B occurring when it is known that
some event A has occurred.

– “The probability that B occurs given that A occurs” or “The
probability of B,given A”

– The notion of conditional probability provides the capability of re-
evaluating the idea of probability of an event in light of additional
information.

• Example: S = 1, 2, 3, 4, 5, 6, A = 4, 5, 6, B = 1, 3, 5, =⇒ P (B|A)?

• Definition 2.9:

P (B|A) =
P (A ∩ B)

P (A)

provided P (A) > 0

• Example: Our sample space S is the population of adults in a small
town. They can be categorized according to gender and employment
status (see Table 1).

Table 1: Categorized adult population in a small town.

Employed Unemployed Total
Male 460 40 500
Female 140 260 400
Total 600 300 900

• One individual is to be selected at random for a publicity tour.

• The concerned events

– M : a man is chosen

– E: the one chosen is employed

P (M |E) =
460

600
=

23

30

P (M |E) =
n(E ∩ M)/n(S)

n(E)/n(S)
=

P (E ∩ M)

P (E)
=

460

900

600

900

=
23

30

• Example 2.33: The probability that a regularly scheduled flight de-
parts on time is P (D) = 0.83;
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• the probability that arrives on time is P (A) = 0.82;

• the probability that it departs and arrives on time is P (D∩A) = 0.78.

• Find the probability that a plane

– arrives on time given that it departed on time, and

P (A|D) =
P (D ∩ A)

P (D)
=

0.78

0.83
= 0.94

– departed on time given that it has arrived on time.

P (D|A) =
P (D ∩ A)

P (A)
=

0.78

0.82
= 0.95

• Definition 2.10:

Two events A and B are said to be independent

if and only if

P (B|A) = P (B) or P (A|B) = P (A).

Otherwise, A and B are dependent.

• If knowing that event B occurred doesn’t change the probability that
A will occur, then B must carry no information about A.

• The condition P (B|A) = P (B) implies that P (A|B) = P (A), and
conversely.

• Example: Two cards are drawn in succession, with replacement

– Event A: the first card is an ace

– Event B: the second card is a spade

P (B|A) =
P (A ∩ B)

P (A)
=

1/52

4/52
=

13

52
=

1

4
and P (B) =

13

52
=

1

4

– Since P (B|A) = P (B), these two events are independent.

0.3 Multiplicative Rules

• Multiplying the formula of Definition 2.9 by P (A), we obtain the mul-

tiplicative rule, which enables us to calculate the probability that
two events will both occur.
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• Theorem 2.13:
If in an experiment the events A and B can both occur, then

P (A ∩ B) = P (A) ∗ P (B|A)

provided P (A) > 0

• We can also write

P (A ∩ B) = P (B ∩ A) = P (B) ∗ P (A|B)

• Example 2.35: Suppose that we have a fuse box containing 20 fuses,
of which 5 are defective. If 2 fuses are selected at random and removed
from the box in succession without replacing the first.

• What is the probability that both fuses are defective?

– Event A: the first fuse is defective

– Event B: the second fuse is defective. Hence,

P (A ∩ B) = P (A) ∗ P (B|A) =
1

4
∗

4

19
=

1

19

• Example 2.36: One bag contains 4 white balls and 3 black balls. A
second bag contains 3 white balls and 5 black balls.

• One ball is drawn from the first bag and placed unseen in the second
bag. What is the probability that a ball now drawn from the second
bag is black?

• Solution: Let B1, B2, and W1 represent, respectively, the drawing of a
black ball from bag 1, a black ball from bag 2, and a white ball from
bag 1.

p[(B1 ∩ B2) ∪ (W1 ∩ B2)] = P (B1 ∩ B2) + P (W1 ∩ B2)

= P (B1)P (B2|B1) + P (W1)P (B2|W1)

=
3

7
∗

6

9
+

4

7
∗

5

9
=

38

63

• Theorem 2.14:
Two events A and B are (statistically or probabilistically) independent
if and only if

P (A ∩ B) = P (A)P (B)

. Therefore, to obtain the probability that two independent events will
both occur, we simply find the product of their individual probabilities.
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Figure 2: Tree diagram for Example 2.36.

• Example 2.37: A small town has one fire engine and one ambulance
available for emergencies.

– The probability that the fire engine is available when needed is
0.98,

– The probability that the ambulance is available when called is 0.92

– In the event of an injury resulting from a burning building, find
the probability that both the ambulance and the fire engine will
be available.

• Solution: Let A and B represent the respective evens that the fire
engine and the ambulance are available. Then

P (A ∩ B) = P (A)P (B) = 0.98 ∗ 0.92 = 0.9016.

• Example 2.38: Find the probability that

– the entire system works

– the component C does not work, given that the entire system
works

• Solution:

P (A ∩ B ∩ (C ∪ D)) = P (A) ∗ P (B) ∗ P (C ∪ D)
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Figure 3: An electrical system for Example 2.38.

= P (A) ∗P (B) ∗ (1−P (C ′ ∩D′)) = P (A) ∗P (B) ∗ (1−P (C ′) ∗P (D′))

= 0.9 ∗ 0.9 ∗ (1 − (1 − 0.8) ∗ (1 − 0.8)) = 0.7776

•

P =
P (the system works but C does not work)

P (the system works)

=
P (A ∩ B ∩ C ′ ∩ D)

P (A ∩ B ∩ (C ∪ D))
=

0.9 ∗ 0.9 ∗ (1 − 0.8) ∗ 0.8

0.7776
= 0.1667

• Independence is often easy to grasp intuitively.

• For example, if the occurrence of two events is governed by distinct
and non-interacting physical processes, such events will turn out to be
independent.

• On the other hand, independence is not easily visualized in terms of
the sample space.

• A common fallacy (wrong idea) is that two events are independent if
they are disjoint, but in fact the opposite is true:

Two disjoint events A and B with P (A) > 0 and P (B) > 0 are never
independent, since their intersection A∩B is empty and has probability
0.

• We note that

(i) independent events are never mutually exclusive,

(ii) two mutually exclusive events are always dependent.
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• Theorem 2.15:
If the events A1, A2, A3, . . . , Ak can occur, then

P (A1 ∩ A2 ∩ . . . ∩ Ak) = P (A1)P (A2|A1)P (A3|A1 ∩ A2)

. . . P (Ak|A1 ∩ A2 ∩ . . . ∩ Ak)

If the events A1, A2, A3, . . . , Ak are independent, then

P (Ak|A1 ∩ A2 ∩ . . . ∩ Ak) = P (A1)P (A2) . . . P (Ak) =
k∏

n=1

P (An)

• Example 2.39: Three cards are drawn in succession without replacement.
Find the probability that the event A1 ∩ A2 ∩ A3 occurs, where

– A1: the first card is red ace

– A2: the second card is a 10 or jack

– A3: the third card is greater than 3 but less than 7

• Solution:

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2|A1)P (A3|A1 ∩ A2)

=
2

52
∗

8

51
∗

12

50
=

8

5525

• Independence of Several Events:

The events A1, A2, A3, . . . , An are independent if

P (
⋂

i∈S

Ai) =
∏

i∈S

P (Ai)

for any subset S of {1, 2, . . . , n}.

• Independence means that the occurrence or non-occurrence of any num-
ber of the events from that collection carries no information on the
remaining events or their complements.

• Example: Independence of three events: If A1, A2 and A3 are
independent,

P (A1 ∩ A2) = P (A1)P (A2)

P (A1 ∩ A3) = P (A1)P (A3)
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P (A2 ∩ A3) = P (A2)P (A3)

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3)

• Example: Consider two independent fair coin tosses, and the following
events:

– H1= 1st toss is a head,

– H2= 2nd toss is a head,

– D = the two tosses have different results.

• Pairwise independence does not imply independence.

– H1 and H2 are independent, by definition.

– P (D|H1) = P (D) and P (D|H2) = P (D)

– P (H1 ∩ H2 ∩ D) = 0 6= P (H1)P (H2)P (D)

• Example: Consider two independent rolls of a fair die, and the follow-
ing events:

– A = 1st roll is 1, 2, or 3, B = 2nd roll is 3, 4, or 5, C = the sum
of the two rolls is 9.

• P (A1 ∩A2 ∩A3) = P (A1)P (A2)P (A3) is not enough for independence.

– P (A ∩ B) = 1

6
6= 1

2
∗ 1

2
= P (A)P (B)

– P (A ∩ C) = 1

36
6= 1

2
∗ 4

36
= P (A)P (C)

– P (B ∩ C) = 3

6
6= 1

2
∗ 4

36
= P (B)P (C)

– P (A ∩ B ∩ C) = 1

36
6= 1

2
∗ 1

2
∗ 4

36
= P (A)P (B)P (C)

0.4 Bayes’Rules

• Our sample space S is the population of adults in a small town. They
can be categorized according to employment status.

• One individual is to be selected at random for a publicity tour.

– The concerned event E: the one chosen is employed

– Give the additional information that 36 of those employed and 12
of those unemployed are members of the Rotary Club.

– Find the probability of the event A that individual selected is a
member of the Rotary Club.
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Figure 4: Venn diagram for the events A, E, and E ′.

• Event A is the union of the two mutually exclusive events E ∩ A and
E ′ ∩ A. Hence,

•A = (E ∩ A) ∪ (E ′ ∩ A)

•P (A) = P [(E ∩ A) ∪ (E ′ ∩ A)]

= P (E ∩ A) + P (E ′ ∩ A)

= P (E)P (A|E) + P (E ′)P (A|E ′)

•P (E) =
600

900
=

2

3
, P (A|E) =

36

600
=

3

50

•P (E′) =
1

3
, P (A|E) =

12

300
=

1

25

•P (A) =
2

3
∗

3

50
+

1

3
∗

1

25
=

4

75

• Theorem 2.16: (Theorem of total probability or rule of elimi-

nation)

If the events B1, B2, . . . , Bk constitute a partition of the sample space
S such that P (Bi) 6= 0 for i = 1, 2, . . . , k, then for any event A of S,

P (A) =
k∑

i=1

P (Bi ∩ A) =
k∑

i=1

P (Bi)P (A|Bi)
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Figure 5: Tree diagram for the data.

Figure 6: Partitioning the sample space S.

• Example 2.41: In a certain assembly plant, three machines, B1, B2

and B3 make 30%, 45% and 25%, respectively, of the products.

• It is known from past experience that 2%, 3%, and 2% of the products
made by each machine, respectively, are defective.

• Now, suppose that a finished product is randomly selected. What is
the probability that it is defective?

P (A) = P (B1)P (A|B1) + P (B2)P (A|B2) + P (B3)P (A|B3)

= 03 ∗ 0.02 + 0.45 ∗ 0.03 + 0.25 ∗ 0.02 = 0.0245

• Solution:
• Event A: the product is defective.
• Event B: the product is made by machine Bi
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Figure 7: Tree diagram for Example 2.41.

• Theorem 2.17: (Bayes’Rule)

If the events B1, B2, . . . Bk constitute a partition of the sample space S
such that P (Bi) 6= 0 for i = 1, 2, . . . , k, then

P (Br|A) =
P (Br ∩ A)

∑k

i=1
P (Bi ∩ A

=
P (Br)P (A|Br)∑k

i=1
P (Bi)P (A|Bi)

• It can be proved by the definition of conditional probability,

P (Br|A) = P (Br ∩ A)/P (A)

and then using Theorem 2.16 in the denominator.

• Useful in problems where P (Bi|A) are not known but P (A|Bi) and
P (Bi) are known.

• Some terminology:

– P (Bi) : priors

– P (A|Bi) : likelihoods

– P (Bi|A) : posteriors

• Example 2.42: With reference to Example 2.41, if a product were
chosen randomly and found to be defective, what is the probability
that it was made by machine B3

• Using Bayes’rule,

P (B3|A) =
P (B3)P (A|B3)

P (B1)P (A|B1) + P (B2)P (A|B2) + P (B3)P (A|B3)
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=
0.005

0.006 + 0.0135 + 0.005
=

10

49

• Example 2.43: A manufacturing firm employs three analytical plans
for the design and development of a particular product.

• For cost reasons, all three are used at varying times. In fact, plans 1,
2, and 3 are used for 30%, 20%, and 50% of the products respectively.

• The “defect rate” is different for the three procedures as follows:

P (D|P1) = 0.01, P (D|P2) = 0.03, P (D|P3) = 0.5

where P (D|Pj) is the probability of a defective product, given plan j.

• If a random product was observed and found to be defective, which
plan was most likely used and thus responsible?

• Solution: P (P1) = 0.3, (P12) = 0.2, (P1) = 0.5

P (Pi|D) =
P (Pi)P (D|Pi)∑
3

i=1
P (Pi)P (D|Pi)

=
(0.30)(0.01)

(0.3)(0.01) + (0.20)(0.03) + (0.50)(0.02)
=

0.003

0.019

P (P1|D) = 0.158, P (P2|D) = 0.316, P (P3|D) = 0.526.
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