
1 Programming the User Interface

1.1 Terminal Control the Hard Way

• Controlling terminals under Linux is covered. It will show you the low-
level APIs for controlling terminals and for controlling screen output
in Linux applications.

• The notion of terminal control is a holdover from computing’s earliest
days, when users interacted with the CPU from dumb terminals.

• The Terminal Interface;

– The terminal, or tty, interface derives from the days when users
sat in front of a typewriter attached to a printer.

– The tty interface is based on a hardware model that assumes a
keyboard and printer combination is connected to a remote com-
puter system using a serial port. This model is a distant relative
of the current client-server computing architecture.

– The model is sufficiently general that almost every situation in
which a program needs to interact with some sort of input or
output device, such as a printer, the console, xterms, or network
logins, can be described as a subset of the general case.

– As a result, the model actually simplifies the programmer’s task
because it provides a consistent programming interface that can
be applied in a wide variety of situations.

– Consider all of the different keyboard models, mice, joysticks, and
other devices used to transmit user input. Add to that set all of
the different kinds of output devices, such as modems, printers,
plotters, serial devices, video cards, and monitors. The terminal
interface has to accommodate all of these devices.

1.1.1 Controlling Terminals

• POSIX defines a standard interface for querying and manipulating ter-
minals. This interface is called termios and is defined in the system
header file < termios.h >.

• termios provides finely grained control over how Linux receives and
processes input.

1

• From a programmer’s perspective, termios is a data structure and a
set of functions that manipulate it. (see man 3 termios)

• Terminals operate in one of two modes,

– canonical (or cooked) mode, in which the terminal device driver
processes special characters and feeds input to a program one line
at a time, (the shell is an example of an application that uses
canonical mode)

– non-canonical (or raw) mode, in which most keyboard input is
unprocessed and unbuffered. (the screen editor vi, uses non-
canonical mode; vi receives input as it is typed and processes
most special characters itself (D̂, for example, moves to the end
of a file in vi, but signals EOF to the shell))

• The termios interface includes functions

– Attribute Control Functions; the interface includes functions for
controlling terminal characteristics.

– Speed Control Functions; the first four functions set the input and
output speed of a terminal device.

– Line Control Functions; the line control functions query and set
various properties concerned with how, when, and if data flows to
the terminal device.

– Process Control Functions; the process control functions the termios
interface defines enable you to get information about the processes
(programs) running on a given terminal.

• The Fig. 1 depicts the relationship between the hardware model and
the termios data structures.

1.1.2 Using the Terminal Interface

• Of the functions that manipulate termios structures, tcgetattr() and
tcsetattr() are the most frequently used.

• As their names suggest, tcgetattr() queries a terminal’s state and tcse-
tattr() changes it. Both accept a file descriptor fd that corresponds to
the process’s controlling terminal and a pointer tp to a termios struct.

• The program in Fig. 2 illustrates using termios to turn off character
echo when entering a password.

2

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/noecho.c

Figure 1: How the hardware model maps to the termios structure.

1.1.3 Changing Terminal Modes

• The program in Fig. 2 did manipulate some terminal attributes, but
remained in canonical mode. The program in Fig. 3 puts the terminal
in raw mode and performs its own processing on special characters and
signals.

1.1.4 Using terminfo

• Where termios gives you very low-level control over input processing,
terminfo gives you a similar level of control over output processing.

• terminfo provides a portable, lowlevel interface to operations such as
clearing a terminal screen, positioning the cursor, or deleting lines or
characters (see man 5 terminfo).

• terminfo Capabilities; For each possible terminal type, such as VT100
or xterm, terminfo maintains a list of that terminal’s capabilities and
features, called a capname, or CAPability NAME. Capnames fall into
one of the following categories:

– boolean,

– numeric,

– string.

• The program in Fig. 4 shows how to query and print a few (and some
additional) of the current terminal’s capabilities.

3

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/rawmode.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/newgetcaps.c

#include <stdio.h>

#include <stdlib.h>

#include <termios.h>

#define PASS_LEN 8

void err_quit(char *msg, struct termios flags);

int main()

{

struct termios old_flags, new_flags;

char password[PASS_LEN + 1];

int retval;

/* Get the current terminal settings */

tcgetattr(fileno(stdin), &old_flags);

new_flags = old_flags;

/* Turn off local echo, but pass the newlines through */

new_flags.c_lflag &= ~ECHO;

new_flags.c_lflag |= ECHONL;

/* Did it work? */

retval = tcsetattr(fileno(stdin), TCSAFLUSH, &new_flags);

if(retval != 0) err_quit("Failed to set attributes", old_flags);

/* Did the settings change? */

tcgetattr(fileno(stdin), &new_flags);

if(new_flags.c_lflag & ECHO)

err_quit("Failed to turn off ECHO", old_flags);

if(!new_flags.c_lflag & ECHONL)

err_quit("Failed to turn on ECHONL", old_flags);

fprintf(stdout, "Enter password: ");

fgets(password, PASS_LEN + 1, stdin);

fprintf(stdout, "You typed: %s", password);

/* Restore the old termios settings */

tcsetattr(fileno(stdin), TCSANOW, &old_flags);

exit(EXIT_SUCCESS);

}

void err_quit(char *msg, struct termios flags)

{

fprintf(stderr, "%s \n", msg);

tcsetattr(fileno(stdin), TCSANOW, &flags);

exit(EXIT_FAILURE);

}

Figure 2: Using termios to turn off character echo.

4

#include <termios.h>

#include <unistd.h>

#include <signal.h>

#include <stdlib.h>

#include <stdio.h>

void err_quit(char *msg);

void err_reset(char *msg, struct termios *flags);

static void sig_caught(int signum);

int main(void)

{

struct termios new_flags, old_flags;

int i, fd;

char c;

/* Set up a signal handler */

if(signal(SIGINT, sig_caught) == SIG_ERR)

err_quit("Failed to set up SIGINT handler");

if(signal(SIGQUIT, sig_caught) == SIG_ERR)

err_quit("Failed to set up SIGQUIT handler");

if(signal(SIGTERM, sig_caught) == SIG_ERR)

err_quit("Failed to set up SIGTERM handler");

fd = fileno(stdin);

/* Set up raw/non-canonical mode */

tcgetattr(fd, &old_flags);

new_flags = old_flags;

new_flags.c_lflag &= ~(ECHO | ICANON | ISIG);

new_flags.c_iflag &= ~(BRKINT | ICRNL);

new_flags.c_oflag &= ~OPOST;

new_flags.c_cc[VTIME] = 0;

new_flags.c_cc[VMIN] = 1;

if(tcsetattr(fd, TCSAFLUSH, &new_flags) < 0)

err_reset("Failed to change attributes", &old_flags);

/* Process keystrokes until DELETE key is pressed */

fprintf(stdout, "In RAW mode. Press DELETE key to exit\n");

while((i = read(fd, &c, 1)) == 1) {

if((c &= 255) == 0177)

break;

printf("%o\n", c);

}

/* Restore original terminal attributes */

tcsetattr(fd, TCSANOW, &old_flags);

exit(0);

}

void sig_caught(int signum)

{ fprintf(stdout, "signal caught: %d\n", signum);}

void err_quit(char *msg)

{ fprintf(stderr, "%s\n", msg);

exit(EXIT_FAILURE); }

void err_reset(char *msg, struct termios *flags)

{ fprintf(stderr, "%s\n", msg);

tcsetattr(fileno(stdin), TCSANOW, flags);

exit(EXIT_FAILURE);}

Figure 3: Puts the terminal in raw mode.

5

#include <stdlib.h>

#include <stdio.h>

#include <term.h>

#include <curses.h>

#define NUMCAPS 3

void clrscr(void);

void mv_cursor(int, int);

int main(void)

{

char *boolcaps[NUMCAPS] = { "am", "bce", "km" };

char *numcaps[NUMCAPS] = { "cols", "lines", "colors" };

char *strcaps[NUMCAPS] = { "cup", "flash", "hpa" };

char *buf;

int retval, i;

if(setupterm(NULL, fileno(stdout), NULL) != OK) {

perror("setupterm()");

exit(EXIT_FAILURE); }

clrscr();

for(i = 0; i < NUMCAPS; ++i) {

/* position the cursor */

mv_cursor(i, 10);

retval = tigetflag(boolcaps[i]);

if(retval == FALSE)

printf("’%s’ unsupported\n", boolcaps[i]);

else

printf("’%s’ supported\n", boolcaps[i]); }

sleep(3);

clrscr();

for(i = 0; i < NUMCAPS; ++i) {

mv_cursor(i, 10);

retval = tigetnum(numcaps[i]);

if(retval == ERR)

printf("’%s’ unsupported\n", numcaps[i]);

else

printf("’%s’ is %d\n", numcaps[i], retval); }

sleep(3);

clrscr();

for(i = 0; i < NUMCAPS; ++i) {

mv_cursor(i, 10);

buf = tigetstr(strcaps[i]);

if(buf == NULL)

printf("’%s’ unsupported\n", strcaps[i]);

else

printf("’%s’ is \\E%s\n", strcaps[i], &buf[1]); }

sleep(3);

exit(0);

}

// Clear the screen

void clrscr(void)

{ char *buf = tigetstr("clear");

putp(buf);}

/* Move the cursor to the specified row row and column col*/

void mv_cursor(int row, int col)

{ char *cap = tigetstr("cup");

putp(tparm(cap, row, col));}

Figure 4: Puts the terminal in raw mode.

6

1.2 Screen Manipulation with ncurses

• A much easier way to use a set of libraries for manipulating terminals.
ncurses (new curses) provides a simple, high-level interface for screen
control and manipulation.

• ncurses, the free implementation of the classic UNIX screenhandling
library, curses (cursor optimization).

• Using termios or, even worse, the tty interface, to manipulate the
screen’s appearance is code-intensive. In addition, it is also terminal-
specific.

• The System V UNIX releases continued curses’ march along the feature
trail, adding support for forms, menus, and panels.

– Forms enable the programmer to create easy-touse data entry
and display windows, simplifying what is usually a difficult and
application- specific coding task.

– Panels extend curses’ ability to deal with overlapping and stacked
windows.

– Menus provide, well, menus, again with a simpler, generalized
interface.

• compile with

$ gcc -o curses_prog curses_prog.c -lcurses

1.2.1 About Windows

• Screen; Screen refers to the physical terminal screen in character or
console mode. Under the X Window system, screen means a terminal
emulator window.

• Window ; Window is used to refer to an independent rectangular area
displayed on a screen. It may or may not be the same size as the screen.

• stdscr ; This is an ncurses data structure, a (WINDOW *), that repre-
sents what you currently see on the screen. It might be one window or
a set of windows, but it fills the entire screen. You can think of it as a
palette on which you paint using ncurses routines.

7

• curscr ; Another pointer to a WINDOW data structure, curscr contains
ncurses’ idea of what the screen currently looks like. Like stdscr, its
size is the width and height of the screen. Differences between curscr
and stdscr are the changes that appear on the screen.

• Refresh; This word refers both to an ncurses function call and a logical
process. The refresh() function compares curscr, ncurses’ notion of
what the screen currently looks like, to stdscr, updates any changes to
curscr, and then displays those changes to the screen. Refresh is also
used to denote the process of updating the screen.

• Cursor ; This term, like refresh, has two similar meanings, but always
refers to the location where the next character will be displayed. On a
screen (the physical screen), cursor refers to the location of the physical
cursor. On a window (an ncurses window), it refers to the logical
location where the next character will be displayed. Generally, in this
chapter, the second meaning applies. ncurses uses a (y,x) ordered pair
to locate the cursor on a window.

• ncurses defines window layout sanely and predictably. Windows are ar-
ranged such that the upper-left corner has the coordinates (0,0) and the
lower-right corner has the coordinates (LINES, COLUMNS). Rather
than using these global variables, however, use the function call get-
maxyx() to get the size of the window with which you are currently
working.

• ncurses’ Function Naming Conventions;

– the move(y,x) call, which moves the cursor to the coordinates
specified by y and x on stdscr,

– but wmove(win, y, x), which moves the cursor to the specified
location in the window win.

– That is, move(y, x); is equivalent to wmove(stdscr, y, x).

1.2.2 Illustrating ncurses Initialization and Termination

The program and also other program in Fig. 5 illustrate the usage of the
ncurses routines. The first program shows the standard ncurses initialization
and termination idioms, using initscr() and endwin(), while the second one
demonstrates the proper use of newterm() and delscreen().

8

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/initcurs.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/newterm.c

#include <stdlib.h>

#include <unistd.h>

#include <curses.h>

#include <errno.h>

int main(void)

{

if((initscr()) == NULL) {

perror("initscr");

exit(EXIT_FAILURE); }

printw("This is a curses window\n");

refresh();

sleep(3);

printw("Going bye-bye now\n");

refresh();

sleep(3);

endwin();

exit(0);

}

#include <stdlib.h>

#include <unistd.h>

#include <curses.h>

#include <errno.h>

int main(void)

{

SCREEN *scr;

if((scr = newterm(NULL, stdout, stdin)) == NULL) {

perror("newterm");

exit(EXIT_FAILURE);

}

if(set_term(scr) == NULL) {

perror("set_term");

endwin();

delscreen(scr);

exit(EXIT_FAILURE); }

printw("This curses window created with newterm()\n");

refresh();

sleep(3);

printw("Going bye-bye now\n");

refresh();

sleep(3);

endwin();

delscreen(scr);

exit(0);

}

Figure 5: UPPER: Shows the initialization and terminations. LOWER:
Demonstrates the usage of newterm and delscreen.

9

1.2.3 Input and Output

• ncurses has many functions for sending output to and receiving input
from screens and windows.

• It is important to understand that C’s standard input and output rou-
tines do not work with ncurses’ windows. Fortunately, ncurses’ I/O
routines behave very similarly to the standard I/O (< stdio.h >) rou-
tines, so the learning curve is tolerably shallow.

• Output Routines,

– character routines,

– string routines,

– miscellaneous routines.

• The program in Fig. 6 illustrates ncurses’ character output functions.
Compile with

$ gcc -c utilfcns.c

$ gcc -o curschar curschar.c -lcurses utilfcns.o

• The program in Fig. 7 demonstrates using the string output functions.

• The program in Fig. 8 illustrates using line graphics characters and
also the box() and wborder() calls.

• The program and also other program in Fig. 9 illustrates the usage
of the input routines getch, getstr, and scanw.

• Color Routines;

– we have already seen that ncurses supports various highlighting
modes. Interestingly, it also supports color in the same fashion.

– before you use ncurses’ color capabilities, you have to make sure
that the current terminal supports color. The has colors() call
returns TRUE or FALSE depending on whether or not the current
terminal has color capabilities.

– The program in Fig. 10 illustrates basic color usage. It must be
run on a terminal emulator that supports color, such as a color
xterm.

10

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/curschar.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/cursstr.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/cursbox.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/cursinch.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/cursgstr.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/color.c

#include <stdlib.h>

#include <curses.h>

#include <errno.h>

#include "utilfcns.h"

int main(void)

{

app_init();

addch(’X’);

addch(’Y’ | A_REVERSE);

mvaddch(2, 1, ’Z’ | A_BOLD);

refresh();

sleep(3);

clear();

waddch(stdscr, ’X’);

waddch(stdscr, ’Y’ | A_REVERSE);

mvwaddch(stdscr, 2, 1, ’Z’ | A_BOLD);

refresh();

sleep(3);

app_exit();

}

Figure 6: Illustrates ncurses’ character output functions.

11

#include <stdlib.h>

#include <curses.h>

#include <errno.h>

#include "utilfcns.h"

int main(void)

{

int xmax, ymax;

WINDOW *tmpwin;

app_init();

getmaxyx(stdscr, ymax, xmax);

addstr("Using the *str() family\n");

hline(ACS_HLINE, xmax);

mvaddstr(3, 0, "This string appears in full\n");

mvaddnstr(5, 0, "This string is truncated\n", 15);

refresh();

sleep(3);

if((tmpwin = newwin(0, 0, 0, 0)) == NULL)

err_quit("newwin");

mvwaddstr(tmpwin, 1, 1, "This message should appear in a new window");

wborder(tmpwin, 0, 0, 0, 0, 0, 0, 0, 0);

touchwin(tmpwin);

wrefresh(tmpwin);

sleep(3);

delwin(tmpwin);

app_exit();

}

Figure 7: Demonstrates using the string output functions.

12

#include <stdlib.h>

#include <curses.h>

#include <errno.h>

#include "utilfcns.h"

int main(void)

{

int ymax, xmax;

app_init();

getmaxyx(stdscr, ymax, xmax);

mvaddch(0, 0, ACS_ULCORNER);

hline(ACS_HLINE, xmax - 2);

mvaddch(ymax - 1, 0, ACS_LLCORNER);

hline(ACS_HLINE, xmax - 2);

mvaddch(0, xmax - 1, ACS_URCORNER);

vline(ACS_VLINE, ymax - 2);

mvvline(1, xmax - 1, ACS_VLINE, ymax - 2);

mvaddch(ymax - 1, xmax - 1, ACS_LRCORNER);

mvprintw((ymax / 3) - 1, (xmax - 30) / 2, "border drawn the hard way");

refresh();

sleep(3);

clear();

box(stdscr, ACS_VLINE, ACS_HLINE);

mvprintw((ymax / 3) - 1, (xmax - 30) / 2, "border drawn the easy way");

refresh();

sleep(3);

clear();

wborder(stdscr, ACS_VLINE | A_BOLD, ACS_VLINE | A_BOLD,

ACS_HLINE | A_BOLD, ACS_HLINE | A_BOLD,

ACS_ULCORNER | A_BOLD, ACS_URCORNER | A_BOLD, \

ACS_LLCORNER | A_BOLD, ACS_LRCORNER | A_BOLD);

mvprintw((ymax / 3) - 1, (xmax - 25) / 2, "border drawn with wborder");

refresh();

sleep(3);

app_exit();

}

Figure 8: Illustrates using line graphics characters.

13

#include <stdlib.h>

#include <curses.h>

#include <errno.h>

#include "utilfcns.h"

int main(void)

{

int c, i = 0;

int xmax, ymax;

char str[80];

WINDOW *pwin;

app_init();

crmode();

getmaxyx(stdscr, ymax, xmax);

if((pwin = subwin(stdscr, 3, 40, ymax / 3, (xmax - 40) / 2)) == NULL)

err_quit("subwin");

box(pwin, ACS_VLINE, ACS_HLINE);

mvwaddstr(pwin, 1, 1, "Password: ");

noecho();

while((c = getch()) != ’\n’ && i < 80) {

str[i++] = c;

waddch(pwin, ’*’);

wrefresh(pwin);

}

echo();

str[i] = ’\0’;

wrefresh(pwin);

mvwprintw(pwin, 1, 1, "You typed: %s\n", str);

box(pwin, ACS_VLINE, ACS_HLINE);

wrefresh(pwin);

sleep(3);

delwin(pwin);

app_exit();

}

#include <stdlib.h>

#include <curses.h>

#include <errno.h>

#include <string.h>

#include "utilfcns.h"

int main(int argc, char *argv[])

{

char str[20];

char *pstr;

app_init();

crmode();

printw("File to open: ");

refresh();

getstr(str);

printw("You typed: %s\n", str);

refresh();

sleep(3);

if((pstr = malloc(sizeof(char) * 20)) == NULL)

err_quit("malloc");

printw("Enter your name: ");

refresh();

getnstr(pstr, 20);

printw("You entered: %s\n", pstr);

refresh();

sleep(3);

free(pstr);

app_exit();

}

Figure 9: Illustrates the usage of the input routines.14

#include <stdlib.h>

#include <curses.h>

#include <errno.h>

#include "utilfcns.h"

int main(void)

{

int n;

app_init();

if(has_colors()) {

if(start_color() == ERR)

err_quit("start_color");

/* Set up some simple color assignments */

init_pair(COLOR_BLACK, COLOR_BLACK, COLOR_BLACK);

init_pair(COLOR_GREEN, COLOR_GREEN, COLOR_BLACK);

init_pair(COLOR_RED, COLOR_RED, COLOR_BLACK);

init_pair(COLOR_CYAN, COLOR_CYAN, COLOR_BLACK);

init_pair(COLOR_WHITE, COLOR_WHITE, COLOR_BLACK);

init_pair(COLOR_MAGENTA, COLOR_MAGENTA, COLOR_BLACK);

init_pair(COLOR_BLUE, COLOR_BLUE, COLOR_BLACK);

init_pair(COLOR_YELLOW, COLOR_YELLOW, COLOR_BLACK);

for(n = 1; n <= 8; n++) {

attron(COLOR_PAIR(n));

printw("color pair %d in NORMAL mode\n", n);

attron(COLOR_PAIR(n) | A_STANDOUT);

printw("color pair %d in STANDOUT mode\n", n);

attroff(A_STANDOUT);

refresh();

}

sleep(10);

}

else {

printw("Terminal does not support color\n");

refresh();

sleep(3);

}

app_exit();

}

Figure 10: Illustrates basic color usage.

15

#include <stdlib.h>

#include <curses.h>

#include <errno.h>

#include "utilfcns.h"

int main(void)

{

WINDOW *win;

FILE *fdump;

int xmax, ymax, n = 0;

app_init();

if(!has_colors()) {

printw("Terminal does not support color\n");

refresh();

sleep(3);

app_exit();

}

if(start_color() == ERR)

err_quit("start_color");

init_pair(COLOR_RED, COLOR_RED, COLOR_BLACK);

init_pair(COLOR_YELLOW, COLOR_YELLOW, COLOR_BLACK);

init_pair(COLOR_WHITE, COLOR_WHITE, COLOR_BLACK);

bkgd(’#’ | COLOR_PAIR(COLOR_RED));

refresh();

sleep(3);

if((win = subwin(stdscr, 10, 10, 0, 0)) == NULL)

err_quit("subwin");

wbkgd(win, ’@’ | COLOR_PAIR(COLOR_YELLOW));

wrefresh(win);

sleep(1);

getmaxyx(stdscr, ymax, xmax);

while(n < xmax - 10) {

mvwin(win, ((ymax - 10) / 2), n);

refresh();

sleep(1);

if(n == ((xmax - 10)/ 2)) {

/* Dump the subwindow to a file */

fdump = fopen("dump.win", "w");

putwin(stdscr, fdump);

fclose(fdump);

}

n += 10;

}

fdump = fopen("dump.win", "r");

win = getwin(fdump);

wrefresh(win);

sleep(3);

clear();

bkgd(’ ’ | COLOR_PAIR(COLOR_WHITE));

mvprintw(1, 1, "ERASE character: %s\n", unctrl(erasechar()));

mvprintw(2, 1, "KILL character : %s\n", unctrl(killchar()));

mvprintw(3, 1, "BAUDRATE (bps) : %d\n", baudrate());

mvprintw(4, 1, "TERMINAL type : %s\n", termname());

refresh();

sleep(5);

delwin(win);

app_exit();

}

Figure 11: Illustrates the usage of the some utility functions.

16

Figure 12: Interaction between events, the X server, and application pro-
grams.

Figure 13: The X Window Programming APIs.

– The program in Fig. 11 illustrates using some of the utility func-
tions.

ncurses is both an easier and more powerful interface for manipulating
the display than termios. ncurses is a ubiquitous library, used in pop-
ular programs such as the mutt mail client, the Midnight Commander
file manager, lynx, ncftp, and nvi.

1.3 X Window Programming

• The X Window software was written at MIT as part of the Athena
project. X Windows allows a program to use the display of a computer

17

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/cursutil.c

other than the computer the program is running on if the owner of that
computer permits it.

• X Windows separates the display and event handling from application
programs. Instead, an application program communicates with the X
server via a socket interface.

• The X server handles keyboard input, mouse input, and the display
screen. For example, when the user clicks the mouse, the X server
detects where the mouse event occurred and sends the mouse event to
the appropriate application program.

• When a window on the display is uncovered, the X server sends the
appropriate application a window expose event.

• Window expose events occur when part or all of a window becomes
visible and therefore needs to be redrawn.

• The application will usually respond by sending back draw operations
to the X server to redraw the window contents.

• Figure 12 shows the interaction between actual user events, the X server
event queue, and application program event queues.

• As shown in Figure 13, X Window applications can use any combination
of the lowlevel Xlib API, the X toolkit (or the X intrinsics), the Athena
Widget set, and the Motif Widget set.

• The Xlib library provides the interface between application programs
and the (possibly remote) X server via a socket interface.

1.3.1 The Xlib API

• For most X Window applications that you’ll develop, you’ll probably
use one of the high-level toolkits such as Motif, Athena, GTK, or Qt.

• However, in addition to providing the software interface between higher-
level toolkits and the X server, the Xlib API provides useful graphics
operations that you’re likely to need in graphics-oriented applications.

• XopenDisplay ; Xlib functions require a display pointer. We use XopenDis-
play to connect a program to an X server. The display name has the
general form hostname:displaynumber:screen-number. You might want
to simply use localhost and default the display and screen numbers.
The function signature is as follows:

18

Display * XOpenDisplay(char *display_name)

• XcreateSimpleWindow and XcreateWindow ; The function XcreateWin-
dow is the general-purpose function for creating new windows on an X
display. The simpler XCreateSimpleWindow function creates a window
using default values inherited from the parent window. The function
signatures are as follows:

Window XcreateWindow(Display *display, Window parent,

int x, int y,

int width, int height,

unsigned int border_width,

unsigned int depth, int class,

Visual * visual,

unsigned long valuemask,

XSetWindowAttributes * attributes)

Window XCreateSimpleWindow(Display * display,

Window parent,

int x, int y,

unsigned int width,

unsigned int height,

unsigned int border_width,

unsigned long border,

unsigned long background)

see man XSetWindowAttributes

• Mapping and Unmapping Windows; An X Window is made visible by
mapping and invisible by unmapping. The function signatures for the
utility functions that control window visibility are as follows:

XMapWindow(Display *display, Window w)

XMapSubwindows(Display * display, Window w)

XUnmapWindow(Display * display, Window w)

– Mapping a window might not immediately make it visible because
a window and all of its parents need to be mapped to become
visible.

– This behavior is convenient because you can make an entire tree
of nested (or child) windows invisible by unmapping the topmost
window.

19

– When you unmap a window, the X server automatically generates
a windows expose event for any windows that are uncovered.

• Destroying Windows; In order to free system resources, X Windows
should be destroyed when they are no longer needed. The XDestroy-
Window function destroys a single window, while XDestroySubWin-
dows destroys all child windows. The signatures for these functions are
as follows:

XDestroyWindow(Display * display, Window w)

XDestroySubwindows(Display * display, Window w)

• Event Handling ; Event handling with the Xlib API is not too difficult.
A program must register for the types of events that it is interested in
by using XSelectInput, and check for events from the X server by using
XNextEvent.

• XSelectInput ; The function signature for XSelectInput is as follows:

XSelectInput(Display * display, Window w, long event_mask)

The display variable defines which X server the application is using for
display. Events are window-specific.

• Initializing Graphics Context and Fonts; An X window has a Graphics
Context (GC) that specifies drawing parameters such as foreground
and background colors and the current font. A GC is created with
XCreateGC that has the following function signature:

GC XCreateGC(Display * display, Drawable d, unsigned long valuemask,

XGCValues * values)

– A Drawable is usually a Window object, but can also be a PixMap.

– After defining a GC, a program might want to set the font, fore-
ground color, and background color using the following functions:

XSetFont(Display *display, GC gc, Font font)

XSetForeground(Display *display, GC gc, unsigned long a_color)

XSetBackground(Display *display, GC gc, unsigned long a_color)

– A color value can be obtained by using XParseColor or using one
of the following macros:

20

BlackPixel(Display * display, Screen screen)

WhitePixel(Display * display, Screen screen)

• Drawing in an X Window ; Usually, drawing in an X Window is per-
formed after a program receives an expose event. The following list of
drawing functions shows a sample of the graphics operations available
to X Window programmers:

XDrawString(Display *display, Drawable d, GC gc, int x, int y,

char * string, int string_length)

XDrawLine(Display *display, Drawable d, GC gc, int x1, int y1,

int x2, int y2)

XDrawRectangle(Display *display, Drawable d, GC gc, int x,

int y, unsigned int width, unsigned int height)

XDrawArc(Display *display, Drawable d, GC gc, int x, int y,

unsigned int width, unsigned int height, int angle1, int angle2)

1.3.2 A Sample Xlib Program

• The sample program provides a simple example of creating a window,
handling events, and performing simple graphics operations using the
Xlib API.

• This simple program uses the function draw bifurcation to draw the
window contents. The function prototype (or signature) is as follows:

void draw_bifurcation(Window window, GC gc, Display *display,

int screen, XColor text_color)

• The function main defines the following data:

Display *display; For referring to X server’s display

int screen; Identifies which screen on the X server you’re using

Window win; Identifies the application’s window

XColor blue; You want to display text using the color blue

unsigned int width=500; Specifies the initial window width

unsigned int height=231; Specifies the initial window height

XFontStruct *font_info; For using a display font

GC gc; Identifies the windows GC

Colormap cmap; Used to query the X server for the color blue

XEvent x_event; Used to fetch X events

XGCValues values; Used for the GC attributes returned by the X server

21

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/bifurcation.c

1.3.3 The X Toolkit API

• We have seen that the Xlib API is a low-level but very efficient library
for writing X Window applications.

• The X toolkit (or intrinsics) library provides higher-level programming
support for writing widgets.

• Widgets are object-oriented display objects, like data entry fields, util-
ities for plotting data, and so on. They are usually written in the C
language, but they’re object-oriented in the sense that they support
inheritance and maintain private data with a public API for accessing
internal widget data.

• Before an application can use the X toolkit, the following function must
be called before any other toolkit functions (the type String is defined
as char *, and a Cardinal is an int):

Widget XtInitialize(String shell_name, String application_class,

XrmOptionDescRec *options, Cardinal num_options,

int * argc, char **argv)

22

	Programming the User Interface
	Terminal Control the Hard Way
	Controlling Terminals
	Using the Terminal Interface
	Changing Terminal Modes
	Using terminfo

	Screen Manipulation with ncurses
	About Windows
	Illustrating ncurses Initialization and Termination
	Input and Output

	X Window Programming
	The Xlib API
	A Sample Xlib Program
	The X Toolkit API

