Multithreaded
Programming in

Cilk (MIT Prof. Charles E.
Leiserson)

Cilk++ (Cilk Arts)
Cilk Plus (Intel)

Emrah SARI
200411209

Cilk

A C language for programming dynamic multithreaded
applications on shared-memory multiprocessors.

Shared-Memory Multiprocessor

7~ B
T

/’ .\ 7 ™~
- |- S
_ = 2 ‘ \ == v

Network

Cilk Is Simple

e Cilk extends the C language with just a handful
of keywords.

e Every Cilk program has a serial semantics.

e Not only is Cilk fast, it provides performance
guarantees based on performance abstractions.
e Cilk is processor-oblivious.

e Cilk’s provably good runtime system auto-
matically manages low-level aspects of parallel
execution, including protocols, load balancing,
and scheduling.

e Cilk supports speculative parallelism.

Comparing Cilk++ and OpenMP

The omp task and the Cilk++ spawn/sync are very similar.

" If your code looks like a sequence of parallelizable Fortran-
style loops, OpenMP will likely give good speedups. If your
control structures are more involved, in particular, involving
nested parallelism, you may find that OpenMP isn’t quite up to
the job:

OpenMP Fibonacci

#pragmaompparallel

/ *Parallelregion,ateamofthreadsiscreateds*/
#pragmaompsingle

{

/ * Executed bythefirstthread*/
fib_result=fib(n);

3

}/*Endofparallelregions*/

int fib (intn) {

intx,y;

if(n<2)

returnn ;

else {
#pragmaomptaskshared (x)
x=fib(n-1);

/ *Anewtasks*/
#pragmaomptaskshared(y)
y=fib(n-2);

/ *Anewtask*/
#pragmaomptaskwait

/ *Waitforthetwotasksabovetocomplete*/
return x +y ;

3
3

Cilk++ Fibonacci

int fib (int n) {

intx,vy;

if(n<2)

return n ;

else {

X = cilk_spawn fib (n-1);
y = cilk_spawn fib (n - 2);
cilk_sync ;

return x + vy ;

3

3

Parallel QuickSort using OpenMP and Cilk++

$ OMP_NUM_THREADS=1 ./a.out 35

Serial fib(35) = 9227465 Time: 0.0800

Parallel fib(35) = 9227465 Time: 3.0700

Parallel fib(35) cutoff(30) = 9227465 Time: 0.0700
S OMP_NUM_THREADS=2 ./a.out 35

Serial fib(35) = 9227465 Time: 0.1100

Parallel fib(35) = 9227465 Time: 11.0000

Parallel fib(35) cutoff(30) = 9227465 Time:
0.060000

S OMP_NUM_THREADS=4 ./a.out 35

Serial fib(35) = 9227465 Time: 0.0800

Parallel fib(35) = 9227465 Time: 16.8300

Parallel fib(35) cutoff(30) = 9227465 Time: 0.0400

Serial fib(35) = 9227465 Time: 0.0900

Parallel fib(35) = 9227465 Time: 0.7300

Parallel fib(35) cutoff(30) = 9227465 Time: 0.0700
S CILK_NPROC=2 ./a.out 35

Serial fib(35) = 9227465 Time: 0.0800

Parallel fib(35) = 9227465 Time: 0.4900

Parallel fib(35) cutoff(30) = 9227465 Time: 0.0400
S CILK_NPROC=4 ./a.out 35

Serial fib(35) = 9227465 Time: 0.1300

Parallel fib(35) = 9227465 Time: 0.2600

Parallel fib(35) cutoff(30) = 9227465 Time: 0.0200

Parallel QuickSort using OpenMP and Cilk++

0
iy
n
@
—
o
(&)
=+
=
o
=
=
o
1=
c
c
=]
o

-

Parallel QuickSort using OpenMP and Cilk++
AMD Phenom X4 9950 (2.6GHz)

LLEELLkLL

Number of Elements / 10M

M Serial

[Parallel (OpenMP)
W Adaptive (OpenMP)
M Parallel (Cilk++)
O Adaptive (Cilk++)

Cilk++

Simple keywords

Simple, powerful expression of task parallelism:
cilk_for - Parallelize for loops

cilk_spawn - Specify the start of parallel execution
cilk_sync - Specify the end of parallel execution

When to use Intel Cilk Plus over other
Parallel Methods?

esimple expression of opportunities for parallelism, rather
than control of execution to perform operations on arrays

ehigher performance obtainable with inherent data
parallelism semantics - array notation

«to use native programming, as opposed to managed
deployment: no managed runtime libraries - you express the

intent

«to mix parallel and serial operations on the same data

