Cankaya University

Department of Computer Engineering

Ceng 471 Parallel Computing

Project : Parallel Programming Languages

Ozerk Onder 200311205

INTRODUCTION

» Inthe past 20 years, parallel computation has helped to solve many significant
problems: especially those not implementable on sequential computers.
« Parallel computers represent an opportunity.

- This opportunity is driven by parallel (concurrent) programming languages that make
high-performance machines usable and usefu.

- Parallel languages allows users to design parallel algorithms as a set of concurrent
actions mapped onto different computing elements.

« Cooperation among actions can be performed in several ways according to the
selected paradigm.

» High-level languages might decrease both the design time and the execution time >
Easier Approach to Parallelism for New Users.

« Typical issues in parallel programming are
o process creation,

synchronization,

communication handling,

deadlock, and

process termination.

o 0 O O

« These issues arise because that are many flows of control through the program (one
per process).

« Languages should make the programming of multicomputers to be not much harder
that programming sequential camputers.

Shared Memory Paradigms

« The concept of shared memory is a useful way to separate program control flow issues
from issues of data mapping, communication, and synchronization.

» Processes cooperate through a shared memory space where shared variables are
stored.

« Some languages for parallel programming provide basic mechanisms for data sharing.

Linda

Orca

Shared Memory Languages:
o Linda,

Orca,

SDL,

OpenMP,

Pthreads,

Ease,

Opus,

Java.

O O 0O O O O O

Linda provides an associative memory abstraction called tuple space.

Threads communicate with each other only by placing tuples in and removing tuples
from this shared associative memory.

Sequential languages can be augmented with tuple space operations to create a new
parallel programming language.

Linda is called a coordination language because the tuple space abstraction
coordinates, but is orthogonal to, the computation activities.

Orca is a language based on a useful set of primitives for sharing of data among
processes.

The Orca system is a hierarchically structured set of abstractions.
o Atthe lowest level, reliable broadcast is the basic primitive so that writes to a
replicated structure can rapidly take effect throughout a system.
o At the next level of abstraction, shared data are encapsulated in passive objects
that are replicated throughout the system.

On these levels, Orca itself provides an objectbased language to create and manage
objects.

OpenMP

OpenMP is a library (application program interface - APIl) that supports parallel
programming on shared memory parallel computers.

OpenMP has been developed by a consortium of vendors of parallel computers (DEC,
HP, Sun, Intel, ...) with the aim to have a standard programming interface for parallel
shared-memory machines.

The OpenMP funcions can be used inside Fortran, C and C++ programs.

They allow the parallel execution of code, the definition of shared data and
synchronization of processes.

Java

« Animportant shared-memory programming language is Java that is popular because of
its connection with platform-independent software delivery on the Web.

- Java is an objectoriented language that supports the implementation of conaurrent
programs by process (called threads) creation and execution.
« To use Java on distributed-memory parallel computer there are different solutions:
o sockets,

o RMI (Remote Method Invocation),
o Java + CORBA.

PVM (Parallel Virtual Machine)

« PVM (Parallel Virtual Machine) is a toolkit currently used to implement parallel
applications on heterogeneous computers.

« The PVM environment provides primitives for process creation and message passing
that can be incorporated into existing procedural languages.

« PVM runs on many platforms from several vendors. In a PV program a process can
run on a workstation and another process can run on a supercomputer.

« For these reasons PVM is widely used and programs are portable,
BUT

« It offer a low-level programming model. Using PVM, programmers must do dl of the
decomposition, placement, and communication explicitly.

HPF (High Performance Fortran)

« HPF is a language for programming computationally intensive scientific applications on
SIMD, MIMD and vector processors.

« HPF is based on exploitation of loop parallellism.

« lterations of the loop body that are conceptually independent can be executed
concurrently.

C*
« The data-parallel C* is an extension of C language.
« (C* was designed by Thinking Machines Corp. to program the Connection Machine.

« However, C* can be used to program several multicomputers using the data parallel
approach.

In this way, each processing element executes, in parallel, the same statement for each
instance of the specified data type.

MPL
« MPL (Mentat Programming Language) is a parallel extension of C++ that combines
o the object-oriented model with
o the data-driven computation model.
» Data-driven model: parallel operations are executed on independent data when they
are available.
« The data-driven model supports high degree of parallelism, while the objectoriented
paradigm hides much of the parallel environment from a user.
- MPL implements both inter-object parallelism (one process per object) and intra-object
parallelism (more processes per object).
» The compiler generates code to build and execute data dependency graphs. Thus
parallelism in MPL is largely transparent to the programmer.
HPC++
« High Performance C++ is a standard lbrary for parallel programming based on the C++
language.
+ HPC++ is composed of two levels:
o Level 1- consists of a specification for a set of class libraries based on the C++
language.
o Level 2 -provides the basic language extensions and runtime library needed to
implement the full HPC++.
» There are two conventional modes o executing an HPC++ program.
« The first is multi-threaded shared memory where the program runs within one context.
o Parallelism comes from the parallel loops and the dynamic creation of threads.
o This model of programming is very well suited to modest levels of parallelism.
« The second mode o program execution is an explicit SPMD model where n copies of
the same program are run on n different contexts.
o Parallelism comes from parallel execution of different tasks.
o This model is well suited for massively parallel computers.
Conclusion

A parallel programming language should

o be easy to program, by providing mechanisms for
= Decomposition of a program into parallel threads;
= Mapping threads to processors;

= Communication and synchronization among threads.
provide a software development methodology;
be architecture-independent;
have guaranteed performance on different architectures;
provide cost measures of programs.

O O O O

Parallel programming languages support the implementation of high-performance
applications in many areas: from the Internet to computational science.

New models, methods and languages allow users to develop more complex programs
with minor efforts.

	Project : Parallel Programming Languages
	Parallel computers represent an opportunity.
	This opportunity is driven by parallel (concurrent) programming languages that make high-performance machines usable and useful.
	Parallel languages allows users to design parallel algorithms as a set of concurrent actions mapped onto different computing elements.
	Cooperation among actions can be performed in several ways according to the selected paradigm.
	High-level languages might decrease both the design time and the execution time > Easier Approach to Parallelism for New Users.
	Typical issues in parallel programming are
	These issues arise because that are many flows of control through the program (one per process).
	Languages should make the programming of multicomputers to be not much harder that programming sequential computers.
	Shared Memory Paradigms
	The concept of shared memory is a useful way to separate program control flow issues from issues of data mapping, communication, and synchronization.
	Processes cooperate through a shared memory space where shared variables are stored.
	Some languages for parallel programming provide basic mechanisms for data sharing.
	Shared Memory Languages:

	Linda
	Linda provides an associative memory abstraction called tuple space.
	Threads communicate with each other only by placing tuples in and removing tuples from this shared associative memory.
	Sequential languages can be augmented with tuple space operations to create a new parallel programming language.
	Linda is called a coordination language because the tuple space abstraction coordinates, but is orthogonal to, the computation activities.

	Orca
	Orca is a language based on a useful set of primitives for sharing of data among processes.
	The Orca system is a hierarchically structured set of abstractions.
	On these levels, Orca itself provides an object-based language to create and manage objects.

	OpenMP
	OpenMP is a library (application program interface - API) that supports parallel programming on shared memory parallel computers.
	OpenMP has been developed by a consortium of vendors of parallel computers (DEC, HP, Sun, Intel, …) with the aim to have a standard programming interface for parallel shared-memory machines.
	The OpenMP functions can be used inside Fortran, C and C++ programs.
	They allow the parallel execution of code, the definition of shared data and synchronization of processes.

	Java
	An important shared-memory programming language is Java that is popular because of its connection with platform-independent software delivery on the Web.
	Java is an object-oriented language that supports the implementation of concurrent programs by process (called threads) creation and execution.
	To use Java on distributed-memory parallel computer there are different solutions:

	PVM (Parallel Virtual Machine)
	PVM (Parallel Virtual Machine) is a toolkit currently used to implement parallel applications on heterogeneous computers.
	The PVM environment provides primitives for process creation and message passing that can be incorporated into existing procedural languages.
	PVM runs on many platforms from several vendors. In a PVM program a process can run on a workstation and another process can run on a supercomputer.
	For these reasons PVM is widely used and programs are portable,
	BUT
	It offer a low-level programming model. Using PVM, programmers must do all of the decomposition, placement, and communication explicitly.

	HPF (High Performance Fortran)
	HPF is a language for programming computationally intensive scientific applications on SIMD, MIMD and vector processors.
	HPF is based on exploitation of loop parallellism.
	Iterations of the loop body that are conceptually independent can be executed concurrently.

	C*
	The data-parallel C* is an extension of C language.
	C* was designed by Thinking Machines Corp. to program the Connection Machine.
	However, C* can be used to program several multicomputers using the data parallel approach.
	In this way, each processing element executes, in parallel, the same statement for each instance of the specified data type.

	MPL
	MPL (Mentat Programming Language) is a parallel extension of C++ that combines
	Data-driven model: parallel operations are executed on independent data when they are available.
	The data-driven model supports high degree of parallelism, while the object-oriented paradigm hides much of the parallel environment from a user.
	MPL implements both inter-object parallelism (one process per object) and intra-object parallelism (more processes per object).
	The compiler generates code to build and execute data dependency graphs. Thus parallelism in MPL is largely transparent to the programmer.

	HPC++
	High Performance C++ is a standard library for parallel programming based on the C++ language.
	HPC++ is composed of two levels:
	There are two conventional modes of executing an HPC++ program.
	The first is multi-threaded shared memory where the program runs within one context.
	The second mode of program execution is an explicit SPMD model where n copies of the same program are run on n different contexts.

	Conclusion
	A parallel programming language should
	Parallel programming languages support the implementation of high-performance applications in many areas: from the Internet to computational science.
	New models, methods and languages allow users to develop more complex programs with minor efforts.

