

Parallel Programming BSW2012, Yozgat

Cem Özdoğan

ozdogan@cankaya.edu.tr http://siber.cankaya.edu.tr

Department of Materials Science and Engineering, Çankaya University,06530 Ankara, Turkey

Introduction

 Data-intensive applications; transaction processing, information retrieval, data mining and analysis, multimedia services, computational physics/ chemistry/biology and nanotechnology.

- Data-intensive applications; transaction processing, information retrieval, data mining and analysis, multimedia services, computational physics/ chemistry/biology and nanotechnology.
- High performance may come from

- Data-intensive applications; transaction processing, information retrieval, data mining and analysis, multimedia services, computational physics/ chemistry/biology and nanotechnology.
- High performance may come from
 - fast dense circuitry,

- Data-intensive applications; transaction processing, information retrieval, data mining and analysis, multimedia services, computational physics/ chemistry/biology and nanotechnology.
- High performance may come from
 - fast dense circuitry,
 - packaging technology,

- Data-intensive applications; transaction processing, information retrieval, data mining and analysis, multimedia services, computational physics/ chemistry/biology and nanotechnology.
- High performance may come from
 - fast dense circuitry,
 - packaging technology,
 - parallelism.

- Data-intensive applications; transaction processing, information retrieval, data mining and analysis, multimedia services, computational physics/ chemistry/biology and nanotechnology.
- High performance may come from
 - fast dense circuitry,
 - packaging technology,
 - parallelism.
- Parallel processors are computer systems consisting of multiple processing units connected via some interconnection network plus the software needed to make the processing units work together.

 Uniprocessor – Single processor supercomputers have achieved great speeds and have been pushing hardware technology to the physical limit of chip manufacturing.

Field I

- Uniprocessor Single processor supercomputers have achieved great speeds and have been pushing hardware technology to the physical limit of chip manufacturing.
 - Physical and architectural bounds (Lithography, $\mu {\rm m}$ size, destructive quantum effects.

Field I

- Uniprocessor Single processor supercomputers have achieved great speeds and have been pushing hardware technology to the physical limit of chip manufacturing.
 - Physical and architectural bounds (Lithography, $\mu {\rm m}$ size, destructive quantum effects.
 - Proposed solutions are maskless lithography process and nanoimprint lithography for the semiconductor).

- Uniprocessor Single processor supercomputers have achieved great speeds and have been pushing hardware technology to the physical limit of chip manufacturing.
 - Physical and architectural bounds (Lithography, $\mu {\rm m}$ size, destructive quantum effects.
 - Proposed solutions are maskless lithography process and nanoimprint lithography for the semiconductor).
 - Uniprocessor systems can achieve to a limited computational power and not capable of delivering solutions to some problems in reasonable time.

 Multiprocessor – Multiple processors cooperate to jointly execute a single computational task in order to speed up its execution.

New issues arise;

- New issues arise;
 - Multiple threads of control vs. single thread of control

- New issues arise;
 - Multiple threads of control vs. single thread of control
 - Partitioning for concurrent execution

- New issues arise;
 - Multiple threads of control vs. single thread of control
 - Partitioning for concurrent execution
 - Task Scheduling

- New issues arise;
 - Multiple threads of control vs. single thread of control
 - Partitioning for concurrent execution
 - Task Scheduling
 - Synchronization

- New issues arise;
 - Multiple threads of control vs. single thread of control
 - Partitioning for concurrent execution
 - Task Scheduling
 - Synchronization
 - Performance

- Most computer scientists agree that there have been four distinct paradigms or eras of computing. These are: batch, time-sharing, desktop, and network.

- Most computer scientists agree that there have been four distinct paradigms or eras of computing. These are: batch, time-sharing, desktop, and network.
 - 1. Batch Era

- Most computer scientists agree that there have been four distinct paradigms or eras of computing. These are: batch, time-sharing, desktop, and network.
 - 1. Batch Era
 - 2. Time-Sharing Era

- Most computer scientists agree that there have been four distinct paradigms or eras of computing. These are: batch, time-sharing, desktop, and network.
 - 1. Batch Era
 - 2. Time-Sharing Era
 - 3. Desktop Era

- Most computer scientists agree that there have been four distinct paradigms or eras of computing. These are: batch, time-sharing, desktop, and network.
 - 1. Batch Era
 - 2. Time-Sharing Era
 - 3. Desktop Era
 - 4. Network Era. They can generally be classified into two main categories:

- Most computer scientists agree that there have been four distinct paradigms or eras of computing. These are: batch, time-sharing, desktop, and network.
 - 1. Batch Era
 - 2. Time-Sharing Era
 - 3. Desktop Era
 - 4. Network Era. They can generally be classified into two main categories:
 - (a) shared memory,

- Most computer scientists agree that there have been four distinct paradigms or eras of computing. These are: batch, time-sharing, desktop, and network.
 - 1. Batch Era
 - 2. Time-Sharing Era
 - 3. Desktop Era
 - 4. Network Era. They can generally be classified into two main categories:
 - (a) shared memory,
 - (b) distributed memory systems.

Distributed memory systems.

- Distributed memory systems.
 - The number of processors in a single machine ranged from several in a shared memory computer to hundreds of thousands in a massively parallel system.

- Distributed memory systems.
 - The number of processors in a single machine ranged from several in a shared memory computer to hundreds of thousands in a massively parallel system.
 - Examples of parallel computers during this era include Sequent Symmetry, Intel iPSC, nCUBE, Intel Paragon, Thinking Machines (CM-2, CM-5), MsPar (MP), Fujitsu (VPP500), and others.

- Distributed memory systems.
 - The number of processors in a single machine ranged from several in a shared memory computer to hundreds of thousands in a massively parallel system.
 - Examples of parallel computers during this era include Sequent Symmetry, Intel iPSC, nCUBE, Intel Paragon, Thinking Machines (CM-2, CM-5), MsPar (MP), Fujitsu (VPP500), and others.
- Current Trends: Clusters, Grids.

 The most popular taxonomy of computer architecture was defined by Flynn in 1966. Flynn's Taxonomy of Com terretered

- The most popular taxonomy of computer architecture was defined by Flynn in 1966.
- Flynn's classification scheme is based on the notion of a stream of information.

- The most popular taxonomy of computer architecture was defined by Flynn in 1966.
- Flynn's classification scheme is based on the notion of a stream of information.
 - Two types of information flow into a processor:

- The most popular taxonomy of computer architecture was defined by Flynn in 1966.
- Flynn's classification scheme is based on the notion of a stream of information.
 - Two types of information flow into a processor:
 - 1. **Instruction**. The instruction stream is defined as the sequence of instructions performed by the processing unit.

- The most popular taxonomy of computer architecture was defined by Flynn in 1966.
- Flynn's classification scheme is based on the notion of a stream of information.
 - Two types of information flow into a processor:
 - 1. **Instruction**. The instruction stream is defined as the sequence of instructions performed by the processing unit.
 - 2. **Data**. The data stream is defined as the data traffic exchanged between the memory and the processing unit.

- The most popular taxonomy of computer architecture was defined by Flynn in 1966.
- Flynn's classification scheme is based on the notion of a stream of information.
 - Two types of information flow into a processor:
 - 1. **Instruction**. The instruction stream is defined as the sequence of instructions performed by the processing unit.
 - 2. **Data**. The data stream is defined as the data traffic exchanged between the memory and the processing unit.
- According to Flynn's classification, either of the instruction or data streams can be single or multiple.

 Computer architecture can be classified into the following four distinct categories:

- Computer architecture can be classified into the following four distinct categories:
 - 1. single instruction single data streams (SISD)

Flynn's Taxonomy of Com terrantitection

- Computer architecture can be classified into the following four distinct categories:
 - 1. single instruction single data streams (SISD)
 - 2. single instruction multiple data streams (SIMD)

- Computer architecture can be classified into the following four distinct categories:
 - 1. single instruction single data streams (SISD)
 - 2. single instruction multiple data streams (SIMD)
 - 3. multiple instruction single data streams (MISD)

- Computer architecture can be classified into the following four distinct categories:
 - 1. single instruction single data streams (SISD)
 - 2. single instruction multiple data streams (SIMD)
 - 3. multiple instruction single data streams (MISD)
 - 4. multiple instruction multiple data streams (MIMD).

- Computer architecture can be classified into the following four distinct categories:
 - 1. single instruction single data streams (SISD)
 - 2. single instruction multiple data streams (SIMD)
 - 3. multiple instruction single data streams (MISD)
 - 4. multiple instruction multiple data streams (MIMD).
- Parallel computers are either SIMD or MIMD.

- Computer architecture can be classified into the following four distinct categories:
 - 1. single instruction single data streams (SISD)
 - 2. single instruction multiple data streams (SIMD)
 - 3. multiple instruction single data streams (MISD)
 - 4. multiple instruction multiple data streams (MIMD).

Parallel computers are either SIMD or MIMD.

 The processing units can communicate and interact with each other using either

- Computer architecture can be classified into the following four distinct categories:
 - 1. single instruction single data streams (SISD)
 - 2. single instruction multiple data streams (SIMD)
 - 3. multiple instruction single data streams (MISD)
 - 4. multiple instruction multiple data streams (MIMD).

Parallel computers are either SIMD or MIMD.

- The processing units can communicate and interact with each other using either
 - shared memory

- Computer architecture can be classified into the following four distinct categories:
 - 1. single instruction single data streams (SISD)
 - 2. single instruction multiple data streams (SIMD)
 - 3. multiple instruction single data streams (MISD)
 - 4. multiple instruction multiple data streams (MIMD).

Parallel computers are either SIMD or MIMD.

- The processing units can communicate and interact with each other using either
 - shared memory
 - or message passing methods.

- 1. Shared memory. Processors exchange information through their central shared memory.
 - Because access to shared memory is balanced, these systems are also called SMP (symmetric multiprocessor) systems.
- 2. **Message passing.** Also referred to as distributed memory. Processors exchange information through their **interconnection network**.
 - There is no global memory, so it is necessary to move data from one local memory to another by means of message passing.

- 1. Shared memory. Processors exchange information through their central shared memory.
 - Because access to shared memory is balanced, these systems are also called SMP (symmetric multiprocessor) systems.
- 2. **Message passing.** Also referred to as distributed memory. Processors exchange information through their **interconnection network**.
 - There is no global memory, so it is necessary to move data from one local memory to another by means of message passing.
 - This is typically done by a Send/Receive pair of commands, which must be written into the application software by a programmer

- 1. Shared memory. Processors exchange information through their central shared memory.
 - Because access to shared memory is balanced, these systems are also called SMP (symmetric multiprocessor) systems.
- 2. **Message passing.** Also referred to as distributed memory. Processors exchange information through their **interconnection network**.
 - There is no global memory, so it is necessary to move data from one local memory to another by means of message passing.
 - This is typically done by a Send/Receive pair of commands, which must be written into the application software by a programmer

- 1. Shared memory. Processors exchange information through their central shared memory.
 - Because access to shared memory is balanced, these systems are also called SMP (symmetric multiprocessor) systems.
- 2. **Message passing.** Also referred to as distributed memory. Processors exchange information through their **interconnection network**.
 - There is no global memory, so it is necessary to move data from one local memory to another by means of message passing.
 - This is typically done by a Send/Receive pair of commands, which must be written into the application software by a programmer

- 1. Shared memory. Processors exchange information through their central shared memory.
 - Because access to shared memory is balanced, these systems are also called SMP (symmetric multiprocessor) systems.
- 2. **Message passing.** Also referred to as distributed memory. Processors exchange information through their **interconnection network**.
 - There is no global memory, so it is necessary to move data from one local memory to another by means of message passing.
 - This is typically done by a Send/Receive pair of commands, which must be written into the application software by a programmer

Two broad categories II

Data copying and dealing with consistency issues.

- Data copying and dealing with consistency issues.
- Programming in the shared memory model was easier, and designing systems in the message passing model provided scalability.

- Data copying and dealing with consistency issues.
- Programming in the shared memory model was easier, and designing systems in the message passing model provided scalability.
- The distributed-shared memory (DSM) architecture began to appear in systems. In such systems,

- Data copying and dealing with consistency issues.
- Programming in the shared memory model was easier, and designing systems in the message passing model provided scalability.
- The distributed-shared memory (DSM) architecture began to appear in systems. In such systems,
 - memory is physically distributed; for example, the hardware architecture follows the message passing school of design,

- Data copying and dealing with consistency issues.
- Programming in the shared memory model was easier, and designing systems in the message passing model provided scalability.
- The distributed-shared memory (DSM) architecture began to appear in systems. In such systems,
 - memory is physically distributed; for example, the hardware architecture follows the message passing school of design,
 - but the programming model follows the shared memory school of thought.

- Data copying and dealing with consistency issues.
- Programming in the shared memory model was easier, and designing systems in the message passing model provided scalability.
- The distributed-shared memory (DSM) architecture began to appear in systems. In such systems,
 - memory is physically distributed; for example, the hardware architecture follows the message passing school of design,
 - but the programming model follows the shared memory school of thought.
 - Thus, the DSM machine is a hybrid that takes advantage of both design schools.