

Properties of graphene in-plane hybridembracing hexagonal shapedhexagonal-Boron Nitride (h-BN) islands andvacancy induced magnetism

IMSTEC2018Nevsehir Haci Bektas Veli University

[Cem](http://boron.physics.metu.edu.tr/ozdogan/) Özdoğan 1 , Nurten Akman 2

cem.ozdogan@ikc.edu.tr http://boron.physics.metu.edu.tr/ozdogan/

¹ Department of Engineering Sciences, Izmir Katip Celebi University, 35620 Izmir, Turkey2 Department of Physics, Mersin University, 33343 Icel, Turkey

- h-BN islands in hexagonal shape with defect.
- Pristine hybrids (GBN) are all non-magnetic andsemiconducting.
- \bullet Defective hybrids might be metallic and possesmagnetic moment.
- Outline:
	- [Graphene](#page-10-0) & h-BN
	- [GBN](#page-11-0) hybrids
	- [Graphene](#page-12-0) and h-BN sheets with mono vacancy
	- GBN [hybrids](#page-16-0) with mono vacancy

- Method: Density Functional Theory
- Exchange-correlation: GGA (PW91)
- •Basis set: Plane waves, PAW Pseudopotential
- Code: VASP
- • **Magnetization energy**; difference between the non spin polarized (NSP) and spin polarized (SP)total energies

$$
\Delta E_M = E_{\rm NSP} - E_{\rm SP} \,. \tag{1}
$$

- Solid state reaction,
	- $\mathbf{G}_{162} + \mathbf{B}_Y + \mathbf{N}_Z \longrightarrow \mathbf{h}\text{-}\mathbf{BN}@ \mathbf{G} + \mathbf{C}_{Y+Z}.$ (2)
- \bullet **Energetics of island implantation: Formation** $\boldsymbol{\mathsf{energy}}\;\mathcal{E}_{\mathrm{f}}$ (at zero temperature and pressure)

$$
\mathcal{E}_{\mathbf{f}} = (E_{\mathbf{h}\text{-}\mathbf{BN}\mathbb{Q}\mathbf{G}} + (Y + Z) \times \mu[\mathbf{C}]) -
$$

\n
$$
(E_{\mathbf{G}_{162}} + Y \times \mu[\mathbf{B}] + Z \times \mu[\mathbf{N}]).
$$
\n(3)

 \bullet μ μ (chemical potential): either atomic or asymptotic bulk limits

• Minimum and maximum formation energies of thehybrid embracing an h-BN island

$$
\mathcal{E}_{f_{\min}} = (E_{\mathbf{h}\text{-BN@G}} + (Y + Z) \times \mu[\mathbf{C}_{\text{bulk}}]) -
$$

\n
$$
(E_{\mathbf{G}_{162}} + Y \times \mu[\mathbf{B}_{\text{atom}}] + Z \times \mu[\mathbf{N}_{\text{atom}}]
$$

\n
$$
\mathcal{E}_{f_{\max}} = (E_{\mathbf{h}\text{-BN@G}} + (Y + Z) \times \mu[\mathbf{C}_{\text{atom}}]) -
$$

\n
$$
(E_{\mathbf{G}_{162}} + Y \times \mu[\mathbf{B}_{\text{bulk}}] + Z \times \mu[\mathbf{N}_{\text{bulk}}]) \quad (4)
$$

• **Energetics of defect formation: Defectformation energy**

$$
E_{form}[D(i,q)] = E_{total}[D(i,q)] - E_{total}[D(0,q)]
$$

+
$$
\sum [n(i) * \mu(i)]
$$
 (5)

Pristine Structures Unit Cell

Graphene h-BN

• Crystalline lattice of graphene andh-BN. Hexagonal. Ideal 2D systems.

- • Crystalline lattice of graphene andh-BN. Hexagonal. Ideal 2D systems.
- • Band structure of graphene unit cell. ²atoms. sp^2 hybdrization. σ states (in-) and π states (out of plane).

- • Crystalline lattice of graphene andh-BN. Hexagonal. Ideal 2D systems.
- • Band structure of graphene unit cell. ²atoms. sp^2 hybdrization. σ states (in-) and π states (out of plane).
- •Band structure of h-BN. ² atoms.

Pristine Structures Working Cell

 \overline{z}

- Crystalline lattice of graphene andh-BN. Hexagonal. Ideal 2D systems.
- • Band structure of graphene unit cell. ²atoms. sp^2 hybdrization. σ states (in-) and π states (out of plane).
- •Band structure of h-BN. ² atoms.
- •Graphene super cell. ¹⁶² atoms.

•

Pristine Structures Working Cell

 \mathbf{z}

 Crystalline lattice of graphene andh-BN. Hexagonal. Ideal 2D systems.

- • Band structure of graphene unit cell. ²atoms. sp^2 hybdrization. σ states (in-) and π states (out of plane).
- •Band structure of h-BN. ² atoms.
- •Graphene super cell. ¹⁶² atoms.
- •h-BN super cell. ¹⁶² atoms.

Pristine Structures Electronic Bands

Graphene h-BN

- • Crystalline lattice of graphene andh-BN. Hexagonal. Ideal 2D systems.
- • Band structure of graphene unit cell. ²atoms. sp^2 hybdrization. σ states (in-) and π states (out of plane).
- •Band structure of h-BN. ² atoms.
- •Graphene super cell. ¹⁶² atoms.
- •h-BN super cell. ¹⁶² atoms.
- Band structures of pristine systems.
	- •Graphene: Semimetal
	- •h-BN: Direct band gap of 4.6 eV

layout

Table 1: Formation energies [\(E](#page-4-0)qn. 4). Electronic and magnetic properties.

Formation energies could be even exothermic. Nonmagnetic. Increasing E_a . g " Cem Özdoğan, Graphene in-plane hybrid embracing hexagonal h-BN islands with mono vacancy. September 14, 2018 – p. 7/19

mono vacancy I

Pristine Working Cell Structures with Mono Vacancy

Table 2: Defect formation energies [\(E](#page-4-1)qn. 5). Electronic and magnetic properties.

Induced magnetism.

mono vacancy II

mono vacancy III

mono vacancy IV

layout with mono vacancy I

- "Interface, Layout and Island". Ten possibilities.
	- VB_I : Boron mono vacancy at the interface
	- $\bullet\;\;\mathsf{VB}_L$: Boron mono vacancy in the layout

KÂTİP ÇELEBİ
ÜNİVERSİTESİ

IMSTED

- VB $_i$: Boron mono vacancy in the island
- VC_{I1} : Removed a carbon bonding with B at the interface
- • VC_{I2} : Removed a carbon bonding with N at the interface
- VC $_L$: Carbon mono vacancy in the layout
- VC $_i$: Carbon mono vacancy in the island
- VN_I : Nitrogen mono vacancy at the interface
- $\bullet\;$ VN $_L$: Nitrogen mono vacancy in the layout
- •• VN_i : Nitrogen mono vacancy in the island

layout with mono vacancy II

IMSTEC

2018

| İZMİR
| KÂTİP ÇELEBİ
| ÜNİVERSİTESİ

layout with mono vacancy II

1h-BN(H)@G

Table $3:$ Defect formation energies [\(E](#page-4-1)qn. 5). Electronic and magnetic properties.

Metallic and Nonmagnetic.

IMSTEC

 2018

İZMİR
KÂTİP ÇELEBİ
ÜNİVERSİTESİ

layout with mono vacancy III

| İZMİR
| KÂTİP ÇELEBİ
| ÜNİVERSİTESİ

IMSTEC

2018

layout with mono vacancy III

7h-BN(H)@G

 $Table 4:$ Defect formation energies [\(E](#page-4-1)qn. 5). Electronic and magnetic properties.

Mostly Metallic and Nonmagnetic.

h-BN hexagonal island in graphene| İZMİR
| KÂTİP ÇELEBİ
| ÜNİVERSİTESİ

layout with mono vacancy IV

IMSTEC

2018

layout with mono vacancy IV

19h-BN(H)@G

 $Table 5:$ Defect formation energies [\(E](#page-4-1)qn. 5). Electronic and magnetic properties.

Mostly Metallic and Induced Magnetism.

İZMİR
KÂTİP ÇELEBİ
ÜNİVERSİTESİ

IMSTEC

 2018

*h-BN hexagonal island in graphene***IMST** izmir *layout with mono vacancy V*KÂTÎP ÇELEBÎ
ÜNİVERSİTESİ **DAN** Electronic Band StructuresGraphene h-BN **22**1h-BN(H-V ${\sf C}_{I1})$ @G **1.51.5110.50.5 (eV) (eV) 00E-EF E-EF -0.5-0.5**Decrease E $_F$ level. No spin **-1-1**splitting. Small ΔE_M . No

-2

 Γ

-1.5

magnetic moment. Metallic.

 Γ

-2

 Γ

M K

 Γ

-1.5

M K

layout with mono vacancy V

Electronic Band Structures

Graphene h-BN

izmir

KÂTÎP ÇELEBÎ
ÜNİVERSİTESİ

IMST

Bell

Increase E $_F$ level. Spin splitting. Nearly flat bands. Small ΔE_M . Unlikely magnetism. Metallic.

*h-BN hexagonal island in graphene***IMST** izmir *layout with mono vacancy V*KÂTÎP ÇELEBÎ
ÜNİVERSİTESİ **DAN** Electronic Band StructuresGraphene h-BN **22**7h-BN(H-V ${\sf C}_{I1})$ @G **1.51.5110.50.5 (eV) (eV) 00E-EF E-EF**

Not affecting E_F level. No spin splitting. Small ΔE_M . No magnetic moment. E_g =0.31 eV.

layout with mono vacancy V

Electronic Band Structures

Graphene h-BN

izmir

KÂTÎP ÇELEBÎ
ÜNİVERSİTESİ

IMST

EXQN

Increase E $_F$ level. Spin splitting. Nearly flat band. Small ΔE_M . Unlikely magnetism. Metallic.

*h-BN hexagonal island in graphene***IMST** izmir *layout with mono vacancy V*KÂTÎP ÇELEBÎ
ÜNİVERSİTESİ **DAN** Electronic Band StructuresGraphene h-BN **22**19h-BN(H-V ${\rm C}_{I1}$)@G **1.51.5110.50.5 (eV) (eV) 00E-EF E-EF -0.5-0.5**

-1

Not affecting E_F level. No spin splitting. Small ΔE_M . No magnetic moment. E_g =0.55 eV.

-1

layout with mono vacancy V

Electronic Band Structures

Graphene h-BN

izmir

KÂTÎP ÇELEBÎ
ÜNİVERSİTESİ

IMST

EXQN

Increase E $_F$ level. Spin splitting. Nearly flat band. Small ΔE_M . Unlikely magnetism. Metallic.

- Energetics of implantation, defect formation, electronic, and magnetic properties of graphene-h-BN (GBN) 2D planar hybrids isanalyzed through the DFT method.
- All relaxed GBN hybrids we studied here preservetheir 2D planar geometry.
- Nonmagnetic ground states of hybrids including ^ahexagonal island display semiconductingproperties.
- Their energy gaps E_g increase with increasing island size in the graphene layout.

- We suggest that increasing the stability mainly depends on the number of atoms at the interfacerather than the size of island.
- It seems to be possible that the nonmagnetic GBN hybrid can attain ^a stable magnetism when it includes ^a C, B or an N mono vacancy.

Akman, N., Özdoğan, C., Journal of Physics and Chemistry of Solids, 115, 187 - 198 (2018).

Akman, N., Özdoğan, C., Journal of Magnetism and Magnetic Materials,(to be submitted).

Thanks

Thanks for your attention

Available at

http://boron.physics.metu.edu.tr/ozdogan/sunum/imstec2018.pdf