Investigation of Energy Storage Capabilities of Graphene and h-BN Double Layer Electrostatic Supercapacitors

Nazan KARA^{1,3}, Hatice KÖKTEN¹, Cem ÖZDOĞAN²

¹ Department of Physics, Middle East Technical University, 06800 Ankara, Turkey
² Department of Engineering Sciences, İzmir Katip Çelebi University, 35620 İzmir, Turkey
³ Grad. School of Natural and Appl. Sciences, Çankaya University, 06530 Ankara, Turkey

hemica

Coñore

OUTLINE

- Introduction
- Models of capacitors
- Methods
- Result and Discusion
 - Graphene Capacitor
 - h-BN Capacitor
 - Silicene Capacitor
- Conclusion

INTRODUCTION

- Quantum capacitance and energy storage capabilities of systems formed in different geometries and shapes are investigated.
- Increasing power density
 - The internal resistance has to be decreased.
 - It can be provided by exchanging of materials.
- Increasing energy density
 - The capacitance has to be increased.
 - Either by increasing the specific

capacitance or by optimizing the electrode layers.

Specific power against specific energy

MODELS

 In the present study; graphene, hexagonal boron nitride (h-BN) and silicene sheets were investigated theoretically as 2-dimesional planar materials in nano size capacitors.

 It is aimed to design nano devices with the best theoretical quantum capacitance value.

MODELS

Three different capacitor structures were studied:

- Graphene Capacitors
 - Distance Analysis
 - Vacancy Defect Effects
 - Stacking
- h-BN Capacitors
 - Number of h-BN Layers
- Silicene Capacitors

METHOD: Calculation of Capacitance

Electronic transport modelling can be explain in two parts:

1. To obtain self- consistent Hamiltonian matrices for electrodes and central regions.

$$[E - H]\varphi = S'$$

$$\boldsymbol{H} = \begin{pmatrix} H_L + \boldsymbol{\Sigma}_L & V_L & \boldsymbol{0} \\ V_L^{\dagger} & H_C & V_R \\ \boldsymbol{0} & V_R^{\dagger} & H_R + \boldsymbol{\Sigma}_R \end{pmatrix}$$

- Then Hamiltonian matrices are formed and used to obtain density matrices in the Non-Equilibrium Green Function (NEGF) method in electron transport.
- The potential difference applied to the electrodes.
- Electrons accelerate from low potential to high one. They form a constant equilibrium state current and density in the central region. Density matrix given as;

$$D_{\mu\nu} = \int_{-\infty}^{\infty} d\epsilon \left[\rho_{\mu\nu}^{L}(\epsilon) n_{F}^{L}(\epsilon - \mu_{L}) + \rho_{\mu\nu}^{R}(\epsilon) n_{F}^{R}(\epsilon - \mu_{L}) \right]$$

METHOD: Calculation of Capacitance

The Atomistic ToolKit (ATK) Program

- Procedure:
 - Choose initial density
 - Calculate V_{eff}[n]
 - Costruct Hamiltonian (H) from V_{eff}[n]
 - Solve Khon-Sham eigenvalue problem
 - Compute new density n'
 - Control if n=n'
 - Repeat procedure up to self-consistency is achieved.
- Calculations are carried out for zero bias and 0.2V, 0.4V, 0.6V, 0.8V and 1.0 V bias.
- We use k-point sampling (4,4,100) of the Monkhorst type.

Atomistix

FoolKit

METHOD: Calculation of Capacitance

- 2. Then transmission calculations; to obtain the conduction, I-V characteristics, capacitance etc.
 - The quantum transport quantities, as well as charge distributions, <u>the quantum capacitance</u> of the system can be found by;

$$C_{\alpha\beta} = e \frac{dQ_{\alpha}}{d\mu_{\beta}}$$

$$\Delta V = d\mu_{\beta}/e$$

$$\Delta Q = Q(V + \Delta V) - Q(V)$$

$$E(V) = \frac{1}{2} \int \delta v(r, V) \, \delta n(r, V) dr$$

Chemical Physics Congress - XII

METHOD

-Spin unpolarized GGA/PBE + NEGF approach is used. (If needed spin polarized calculations will be done.) -The wave functions are expressed by the Double-Zeta-Polarized (DZP) basic sets, which are local numerical atomic trajectories.

-The optimization for running systems is done by the Fast Relaxation Engine (FIRE) Method.

-150 Ry cut-off energy, Fast Fourier Transformations (FFT) –solutions of Poisson Equations

RESULT: The Graphene Capacitors

- Contact Distances (CD) and Inter-Layer Distances (ILD)
- Number of gold atoms in electrode extensions
- Stacking

RESULT: The Graphene Capacitors

RESULT: The Graphene Capacitors

Electrostatic Potential Analysis: CD: 3 Å, ILD: 4.5 Å

$$E(V) = \frac{1}{2}CV^2$$

System Name	Capacitance (x1	10 ⁻²⁰ F)
Analysis	Mulliken	Electrostatic Potential
Au/G-G/Au	1.90	1.50

System Name	Specific Capacitance (µF/cm²)		Gravimetric Capacitance (F/g)	
Analysis	Mulliken	Electrostatic Potential	Mulliken	Electrostatic Potential
Au/G-G/Au	2.93	2.32	39.76	31.41
Au/G-G'/Au	3.37	2.19	45.61	29.66

Chemical Physics Congress - XII

RESULT: The h-BN Capacitor

- In both directions of the h-BN layers, the induced charge density is shown.
- The charge density between the h-BN layers is higher than the other layers; gold and graphene layer.

Gravimotric

System Name	Specific Capacitance (µF/cm ²)		Capacitance (F/g)	
Analysis	Mulliken	Electrostatic Potential	Mulliken	Electrostatic Potential
Au/h-BN/h-BN/Au	2.26	1.29	29.64	16.87
Au/h-BN/h-BN'/Au	2.13	1.26	27.88	16.57

16.10.2018

Chemical Physics Congress - XII

RESULT: The Silicene Capacitors

- The quantum capacitance value obtained was negative and -0.92x10⁻²⁰ F.
- It has been understood that the silicene-based capacitor is not a suitable model system.

System Name	Specific Capacitance (µF/cm²)		Gravimetric Capacitance (F/g)	
Analysis	Mulliken	Electrostatic Potential	Mulliken	Electrostatic Potential
Au/Si/Si/Au	-1.42	0.67	-24.70	11.65

Chemical Physics Congress - XII

RESULT: Vacancy Defects

- Vacancy defects were studied by removing one atom for the studied systems.
- With a rough generalization;
 - Vacancy of carbon causes decreasing the capacitance value.
 - Vacancy of boron completely disrupts the structure of the capacitor.
 - Vacancy of nitrogen causes increasing the capacitance value.

FUTURE WORKS

- Different combinations of the structures studied so far will be used as capacitor material.
- Carbon nanotubes will use as materials in between
- The vacancy effects are planned to investigated more deeply.

ACKNOWLEDGMENTS

This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through the **project No: 115F137.**

Our numerical calculations were performed at TÜBİTAK ULAKBİM, High Performance and Grid Computing Center (TRUBA resources).