Abstract

The main thema of this talk will be an introduc-
tion to high-performance computing for the several as-
pects of scientific computing. The recent situation and
developments both in hardware and software at the
HPC will be introduced. Some general and conceptual
ideas and informations about the methodologies, ap-
proaches, parallel programming tools and utilities/libraries
will be presented and be exemplified wherever it is nec-
essary. Introductory level programming examples for
distibuted memory programming (Message Passing In-
terface, MPI) and shared memory programming (OpenMP)
paradigms will be explained. It is also aimed to dis-
cuss parallel matrix diagonalization techniques as an
application for scientific computing. A central problem
in quantum chemistry is to describe the motion of N
electrons in the field of M fixed nuclear point charges
and brings the necessity of the diagonilization of a pos-
sibly large Hamiltonian matrix to obtain eigenvalues
and eigenvectors. This results as O(IN?) - O(N*)
scaling behavior of run time and memory requirements
with the studied system sizes N for for ab initio meth-
ods. Parallel eigensolvers will be introduced as the one
of the possible solutions and the effects of the some
computational parameters on the scaling behavior for
a case study of tight-binding molecular dynamics sim-
ulation of carbon nanotube will be presented.

0-0



A brief survey of scientific/parallel
computing/programming and parallel
eigensolvers

April 9, 2008 Bilkent, Ankara

Dr. Cem Ozdogan

Department of Computer Engineering, Cankaya University,

06530 Ankara, Turkey E-mail:ozdogan@cankaya.edu.tr

A brief survey of scientific/parallel computing/programming and parallel eigensolvers —p. 1


http://siber.cankaya.edu.tr/

About Myself

# Ph.D. from Physics, METU
# Currently Assistant Professor @ Cankaya University

# Responsiblilities/Interests:

s Lecturing: Numerical Compututations, Programming
(Parallel, Systems, ..)

s Construction & Administration of Cluster @ Cankaya,

» Conduct research on computational chemistry
s Tight-Binding Molecular Dynamics Simulations
(conventional, linear scaling, parallel)
s Ab-Initio Calculations (Gaussian, Vasp)
s Specifically on carbon and boron nano structures
s Generally systems in material science
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Aims of This Presentation

e

An introduction to high-performance computing.

Computational Science Or Scientific Computing or just High
Performance Computing.

Avallable software packages and serial/parallel programming

tools and utilities/libraries

s Compilers & Debugger tools.

o Utility Libraries.

s Scientific Packages (Quantum Chemistry, Molecular
Dynamics, Visualization).

Parallel Computing.

Parallel Eigensolvers.
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Scientific Computing |

# Used to solve problems
with
s time complexity:
Handle bigger
problems

s Space complexity:
The performance of a
particular program
may be improved by
execution on a large
machine

o forfto

>

Explanation; analyze the
data obtained from
experiments.

Estimation; computer
experiments, predict
results of experiments not
performed yet,

Propose; model
phenomena,
Validation; proving of
previously proposed
models,

Number Crunching!
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Scientific Computing Il - wikipedia

# Computational science (or scientific computing) is the field of
study concerned with constructing mathematical models and
numerical solution techniques and using computers to
analyze and solve scientific, social scientific and engineering
problems.

# In practical use, it is typically the application of computer
simulation and other forms of computation to problems in
various scientific disciplines.

# The field is distinct from computer science (the mathematical
study of computation, computers and information
processing).
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Scientific Computing Il - wikipedia

# Scientists and engineers develop computer programs,
application software, that model systems being studied and
run these programs with various sets of input parameters.

# Typically, these models require massive amounts of
calculations (usually floating-point) and are often executed
on supercomputers or distributed computing platforms.

# Numerical analysis is an important underpinning for
techniques used in computational science.
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Scientific Computing IV

Theory/Model Layer
Sciences

iehed ) Scientific ¢y Computer
Mathematics Computing Science

Algorithm Layer

Hardware/Software

Natural

Sciences Application Layer
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Supercomputing |

Hardware: Servers, storage, file systems, etc. The hardware
structure or architecture determines to a large extent what
the possibilities and impossibilities are in speeding up a
computer system beyond the performance of a single CPU.

Compilers: Another important factor that is considered in
combination with the hardware is the capability of compilers
to generate efficient code to be executed on the given
hardware platform.

Supercomputing is now High Performance Computing (HPC).

Classifying computers by architecture; Number of instruction
streams (“processors”) and data streams (“inputs”): Flynn’s
taxonomy.
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Supercomputing I

o HPC:

s Large capability computers (fast CPUs). Performance is
obtained by large numbers of these together working in
parallel.

s Massive memory. High I/O, enormous (fast & large) data
storage.

» High bandwith and low latency networks.

s Specifically parallelized codes (MPI, OpenMP). MPI
(Message Passing Interface) : the assembly language of
parallel programming.

# The majority of systems look like minor variations on the
same theme: clusters of RISC(EPIC)-based Symmetric
Multi-Processing (SMP) nodes which in turn are connected
by a fast network.
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Supercomputing

#® Measure of performance:
s MFLOPS (Million FLoating point Operations Per Second).
s For example, an Intel Itanium 2 at 1.5 GHz can complete
4 floating point operations per cycle or a theoretical peak
performance of 6 GFlop/s.
» A clock cycle being defined as the basic internal unit of
time for the system.

# The mismatch of communication vs. computation speed vs.
memory speed
s computational-bound & communication-bound.

s memory-bound problems; can exhibit superlinear
speedup when run on multiple processors compare to

single processor.
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Supercomputing 1V

# Highest capacity communication networks (Myrinet, 10 GIgE,
InfiniBand, etc.)

s 100 Mb/s Ethernet or Gigabit Ethernet, has the drawback
of a high latency (= 50 — 100 S)

s Myri-10G, supports a 10 Gbit/s data rate, low latency

s InfiniBand, the serial connection’s signalling rate is 2.5
gigabit per second (Gbit/s) in each direction per
connection.

s Single, double, and quad data rates carry 2, 4, or 8
Gbit/s respectively.

s InfiniBand QDR with 12X Quad (QDR) is expected as
productions systems during 2008.
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Some HPC Systems - ENIAC

#® ENIAC, short for Electronic
Numerical Integrator And
Computer.

#® The first general purpose
programmable electronic
computer completed in 1945 at
the University of Pennsylvania.

# Hydrogen bomb design.
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Some HPC Systems - CRAY

#® The Cray 1 was installed in 1976 (Los
— Alamos). The first “supercomputer”.

In 1993, Cray Research offered its
first massively parallel processing
(MPP) system, the Cray T3D
supercomputer.

In 2004, the Cray XD1 system de-
signed around a direct-connect pro-
cessor approach to massively parallel
processing that directly links together
processors, alleviating memory con-
tention and interconnect bottlenecks
found in cluster and SMP systems.
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Some HPC Systems-EarthSimulator

# Japanese supercomputer simulates
Earth for global climate models to
evaluate the effects of global
warming and problems in solid earth
geophysics.. The fastest
supercomputer in the world from
2002 to 2004.

# NEC SX architecture, 640 nodes,
each node with 8 vector processors
(8 Gflop/s peak per processor), 2 ns
cycle time, 16GB shared memory. 10
TB memory. 700 TB disk space. 1.6
PB mass store

#® Area of computer = 4 tennis courts, 3
floors.
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Some HPC Systems - Blue Gene/L

#® The Blue Gene/L machine was
designed to reach operating speeds
In the PFLOPS (petaFLOPS) range,

# Built in collaboration with the
Department of Energy’s
NNSA/Lawrence Livermore National
Laboratory in California.

# LLNL system has a peak speed of
596 Teraflops. Blue Gene systems
occupy the #1 and a total of 4 of the
top 10 positions in the TOP500
supercomputer list (Nov 2007).

# Trading the speed of processors for
lower power consumption.
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top500.0rg

A list of the 500 most powerful computer systems over the
world.

Established in June 1993, compiled twice a year (June &
November).

Using LINPACK Benchmark code (solving linear algebra
equation aX=b).

Organized by world-wide HPC experts, computational
scientists, manufacturers, and the Internet community.
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Top500 List - November 2007 (

1-10)
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Top500 - Performance Devel.
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Top500 - Detalls
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Number of Processors
Operating System
Operating System Family
Inter Connection

Inter Connection Family
Processor Generation
Processor Family
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Compilers

® FORTRAN 77/90/95

s Ifort/ifc - Intel Fortran Compilers

s g7/ (fr7)lgfortran -GNU project Fortran 77
compiler/Fortran 95 compiler

s pgf77/pgfo0 - Portland Group Fortran 77 compiler/Fortran
95 compiller

o f77/f90/f95 - Absoft ProFortran Compilers

s pghpf -Portland Group High Performance Fortran
Compiler

o C/C++

s Icc - Intel C/C++ Compilers

s gcc/g++(ct+) - GNU project C compiler/C++ compiler

» pgcc/pgCcC - Portland Group C compiler/C++ compiler

» ParatteHmpichtarmy——————————————————————
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Profilers & Debuggers

© o o o o

Intel: idb, gprof

PGI: pgdebug, pgprof, gprof SMP machines
GNU: gdb, gprof

Absoft: fx, xfx, gprof

Debugging of parallel programs remain a challenging
research area. Debugging is easier for MPI paradigm than
shared memory paradigm (even if it is hard to believe)
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Utilities & Libraries

® Mathematic Libraries
s IMSL, NAG, etc.

# Scientific Computing

s Linear Algebra, BLAS, ATLAS, EISPACK,
LAPACK,SCALAPACK

s Fast Fourier Transform, FFTW
s The GNU Scientific Library, GSL
s Utility Libraries, netCDF, PETSc, etc.

# Parallel Computing
s OpenMP, PVM, MPI (MPICH, LAM/MPI, MPICH-GM)
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Quantum Chemistry

# ABINIT yes(MPI) ADF PVM Cerius2 MPI GAMESS MPI
Gaussian OpenMP MacroModel - MOLFDIR - Molpro MPI

NWChem MPI MaterialStudio MPI CPMD MPI ACES?2 -
VASP ?
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Molecular Dynamics

# Amber MPIl) NAMD/VMD MPI Gromacs MPI Insightll -
MacroModel - PMEMD MPI Quanta MPI Sybyl - CHARMM
MPI TINKER - O -
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Molecular & Scientific Visualization

® AVS AVS- Express Cerius2 DINO ECCE GaussView GRASP
Insightll - MOIL-VIEW MOLDEN MOLKEL MOLMOL
MOLSCRIPT MOLSTAR MOVIEMOL NBOview QUANTA

RASMOL RASTER3D SPARTAN SPACK SYBYL VMD
Xtal/View XMGR GRACE
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Parallel Computing

# Decomposition of a task into smaller tasks to be performed
simultaneously, I.e. in parallel

# Parallelism is achieved by:
» Break up tasks into smaller tasks
» Assign smaller tasks to workers to work on simultaneously
s Co-ordinate the workers

o Parallel Processing: Concurrent use of multiple processors
to process data.

» Running the same program on many processors.

» Running different programs on the processor (not
preferred).

s Running many programs on each processor (not
preferred).
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The Memory Problem
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#® Processor speed vs Memory speed
» Hierarchal memory
s Streaming data
s Out of order execution
s Compiler optimization
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Memory Types |

M M i | M ‘
/ BUS

MEMORY
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Memory Types Il - Distibuted (DM)

# Distributed . Each CPU has its own associated memory.

s The CPUs are connected by some network and may
exchange data between their respective memories when
required.

s In contrast to shared memory machines the user must be
aware of the location of the data in the local memories.

» Must do message passing to exchange data between
processors explicitly when needed..

s The communication between processors is much slower
than in SM-MIMD systems.

» Moreover, the access to data that are not in the local
memory belonging to a particular processor have to be
obtained from non-local memory (or memories). This is

again on most systems very slow as compared to local
data access.
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Memory Types lll - Shared (SM)

# Shared. Shared memory systems have multiple CPUs all of
which share the same address space.

s This means that the knowledge of where data is stored is
of no concern to the user as there is only one memory
accessed by all CPUs on an equal basis.

s Methods of memory access : Bus and Crossbar.

» The bandwidth problem that obsseses shared-memory
systems.

» The speed of the memory Is another critical issue.
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Memory Types IV - Hybrid

B35 B35

ENNEENENEEE BUS

MEMORY MEMORY MEMORY
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Memory Types V - Programming

# Multiple instruction, multiple data (MIMD) model of parallel
computers classified by their memory model. Shared
memory. Distributed memory. Hybrid (Shared and
Distributed memory)

# The "message passing" model has becomes so much
accepted that PVM and MPI have been adopted by virtually
all major vendors of DM-MIMD systems and even on
SM-MIMD systems for compatibility reasons.

s PVM - standing for Parallel Virtual Machine
s MPI - standing for Message Passing Interface

#® For SM-MIMD systems, OpenMP should be mentioned that
can be used to parallelise Fortran and C(++) programs by
Inserting comment directives (Fortran 77/90/95) or pragmas
(C/C++) Into the code

and hacs hecome a well ectahliched efan d (T’pf')”r"msgﬁér"'@ﬁ



OpenMP

o o

An Application Program Interface (API) ; explicitly direct
multi-threaded, shared memory parallelism

s Compiler Directives

s Runtime Library Routines

s Environment Variables

Open specifications for Multi Processing via collaborative

work between interested parties from the hardware and
software industry, government and academia.

Portable & Standardized
The API is specified for C/C++ and Fortran

Multiple platforms have been implemented including most
Unix platforms and Windows NT

Jointly defined and endorsed by a group of major computer

hardware and software vendors
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OpenMP - Example |

# |n this simple example, the master thread forks a parallel
region.

# All threads in the team obtain their unique thread number
and print it.

#® The master thread only prints the total number of threads.
Two OpenMP library routines are used to obtain the number
of threads and each thread’s number.

export PGI=/usr/local /pgi

export PATH=4PGI/1inuxB6/6.2/bin:$PATH

export MANPATH=fMANPATH:$PGI/1inuxB6/6.2/man

export LD_LIBRARY_PATH=/usr/local/pgi/linuxB6/6.2/1ib1f :
fusr/local /pgi/linuxB6/6. 2/1ib: $LD_LIERARY PATH

export OMP_NUM_THREADS=4 (This line is opticnal.)

pgcc ~mp -0 omp_helle omp_hello.c
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OpenMP - Example Il

#include <omp.h>

#include <stdioc.h>

#include <stdlib.h>

int main (int arge, char #arpv[]) {

int nthreads, tid;

/* Fork a team of threads giving them their own copies of variables =*/
dpragma omp parallel private(nthreads, tid)

{
/* Obtain thread number #*/

tid = omp_get_thread num(};
printf{"Helle World from thread = Jd\n", tid);
f* Only master thread does this =*/
if (tid == 0)
{
nthreads = eomp_get num threads(};
printf("Number of threads = Jd\n", nthreads};
}
}  /+ All threads join master thread and disband =*/
}

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 35



MPI |

o Parallelization scheme for distributed memory. Parallel
programs consist of cooperating processes, each with its
own memory. Standard (specification).

s MPI 1: Traditional message-passing
s MPI 2. Remote memory, parallel I/0O, and dynamic
processes

#® Processes send data to one another as messages. Message
can be passed around among compute processes

# Many implementations (almost each vendor has one)

s MPICH and LAM/MPI from public domain most widely
used

s GLOBUS MPI for grid computing
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MPI I

# Usually the same program is run on multiple processors

#® The 6 basic calls in MPI are (in FORTRAN):
o MPIL_INIT( ierr)
s MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr)
s MPI_COMM_ SIZE( MPI_COMM_WORLD, numprocs, ierr

)
s MPI_Send(buffer, count,MPl INTEGER,destination,
tag,MPl_COMM_WORLD, ierr)

s MPI_Recv(buffer, count, MPI_INTEGER,source,tag,
MPl_COMM_WORLD, status,ierr)

s MPI_FINALIZE(ierr)
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MPI - Example |

# Program takes data from process zero and sends it to all of
the other processes by sending it in a ring.

# That s, process | should receive the data and send it to
process i+1, until the last process is reached.

# Assume that the data consists of a single integer. Process
zero reads the data from the user.
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MPI - Example Il

#include <stdio.h>
#include "mpi.h"
int main{ arge, argv )

int argc;
char #+argy;
{

int rank, wvalue, size;

MPI_Status status;

MPI_Init( &arge, &argv };

MPI_Comm_rank{ MPI_COMM_WOHRLD, &rank );

MPI_Cemm_size({ MPI_COMM_WORLD, &size );

de {
if (rank == () {

scanf { "}4", Evalue };

MPI_Send{ &value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD );
1
alese {

MPI_Recw( &value, 1, MPI_INT, rank - 1, 0, MPI_COMM_WORLD,

Estatus );

if (rank < size - 1)
MPI_Send{ &value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WOELD ) ;
}
printf({ "Process %d got Wd\n", rank, value };

} while (wvalue »>= 0);

MPI_Finalize( };

return 0;
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What is A Grid?

® Web: Uniform access to documents

# Grid: Flexible, high-performance access to resources and
services for distributed communities
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