Abstract

The main thema of this talk will be an introduc-
tion to high-performance computing for the several as-
pects of scientific computing. The recent situation and
developments both in hardware and software at the
HPC will be introduced. Some general and conceptual
ideas and informations about the methodologies, ap-
proaches, parallel programming tools and utilities/libraries
will be presented and be exemplified wherever it is nec-
essary. Introductory level programming examples for
distibuted memory programming (Message Passing In-
terface, MPI) and shared memory programming (OpenMP)
paradigms will be explained. It is also aimed to dis-
cuss parallel matrix diagonalization techniques as an
application for scientific computing. A central problem
in quantum chemistry is to describe the motion of N
electrons in the field of M fixed nuclear point charges
and brings the necessity of the diagonilization of a pos-
sibly large Hamiltonian matrix to obtain eigenvalues
and eigenvectors. This results as O(IN?) - O(N*)
scaling behavior of run time and memory requirements
with the studied system sizes N for for ab initio meth-
ods. Parallel eigensolvers will be introduced as the one
of the possible solutions and the effects of the some
computational parameters on the scaling behavior for
a case study of tight-binding molecular dynamics sim-
ulation of carbon nanotube will be presented.

0-0

A brief survey of scientific/parallel
computing/programming and parallel
eigensolvers

April 9, 2008 Bilkent, Ankara

Dr. Cem Ozdogan

Department of Computer Engineering, Cankaya University,

06530 Ankara, Turkey E-mail:ozdogan@cankaya.edu.tr

A brief survey of scientific/parallel computing/programming and parallel eigensolvers —p. 1

http://siber.cankaya.edu.tr/

About Myself

Ph.D. from Physics, METU
Currently Assistant Professor @ Cankaya University

Responsiblilities/Interests:

s Lecturing: Numerical Compututations, Programming
(Parallel, Systems, ..)

s Construction & Administration of Cluster @ Cankaya,

» Conduct research on computational chemistry
s Tight-Binding Molecular Dynamics Simulations
(conventional, linear scaling, parallel)
s Ab-Initio Calculations (Gaussian, Vasp)
s Specifically on carbon and boron nano structures
s Generally systems in material science

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 2

Aims of This Presentation

e

An introduction to high-performance computing.

Computational Science Or Scientific Computing or just High
Performance Computing.

Avallable software packages and serial/parallel programming

tools and utilities/libraries

s Compilers & Debugger tools.

o Utility Libraries.

s Scientific Packages (Quantum Chemistry, Molecular
Dynamics, Visualization).

Parallel Computing.

Parallel Eigensolvers.

A brief survey of scientific/parallel computing/programming and parallel eigensolver

s—p.3

Scientific Computing |

Used to solve problems
with
s time complexity:
Handle bigger
problems

s Space complexity:
The performance of a
particular program
may be improved by
execution on a large
machine

o forfto

>

Explanation; analyze the
data obtained from
experiments.

Estimation; computer
experiments, predict
results of experiments not
performed yet,

Propose; model
phenomena,
Validation; proving of
previously proposed
models,

Number Crunching!

A brief survey of scientific/parallel computing/programming and parallel eigensolvers

_p4

Scientific Computing Il - wikipedia

Computational science (or scientific computing) is the field of
study concerned with constructing mathematical models and
numerical solution techniques and using computers to
analyze and solve scientific, social scientific and engineering
problems.

In practical use, it is typically the application of computer
simulation and other forms of computation to problems in
various scientific disciplines.

The field is distinct from computer science (the mathematical
study of computation, computers and information
processing).

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 5

Scientific Computing Il - wikipedia

Scientists and engineers develop computer programs,
application software, that model systems being studied and
run these programs with various sets of input parameters.

Typically, these models require massive amounts of
calculations (usually floating-point) and are often executed
on supercomputers or distributed computing platforms.

Numerical analysis is an important underpinning for
techniques used in computational science.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 6

Scientific Computing IV

Theory/Model Layer
Sciences

iehed) Scientific ¢y Computer
Mathematics Computing Science

Algorithm Layer

Hardware/Software

Natural

Sciences Application Layer

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 7

Supercomputing |

Hardware: Servers, storage, file systems, etc. The hardware
structure or architecture determines to a large extent what
the possibilities and impossibilities are in speeding up a
computer system beyond the performance of a single CPU.

Compilers: Another important factor that is considered in
combination with the hardware is the capability of compilers
to generate efficient code to be executed on the given
hardware platform.

Supercomputing is now High Performance Computing (HPC).

Classifying computers by architecture; Number of instruction
streams (“processors”) and data streams (“inputs”): Flynn’s
taxonomy.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 8

Supercomputing I

o HPC:

s Large capability computers (fast CPUs). Performance is
obtained by large numbers of these together working in
parallel.

s Massive memory. High I/O, enormous (fast & large) data
storage.

» High bandwith and low latency networks.

s Specifically parallelized codes (MPI, OpenMP). MPI
(Message Passing Interface) : the assembly language of
parallel programming.

The majority of systems look like minor variations on the
same theme: clusters of RISC(EPIC)-based Symmetric
Multi-Processing (SMP) nodes which in turn are connected
by a fast network.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 9

Supercomputing

#® Measure of performance:
s MFLOPS (Million FLoating point Operations Per Second).
s For example, an Intel Itanium 2 at 1.5 GHz can complete
4 floating point operations per cycle or a theoretical peak
performance of 6 GFlop/s.
» A clock cycle being defined as the basic internal unit of
time for the system.

The mismatch of communication vs. computation speed vs.
memory speed
s computational-bound & communication-bound.

s memory-bound problems; can exhibit superlinear
speedup when run on multiple processors compare to

single processor.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 10

Supercomputing 1V

Highest capacity communication networks (Myrinet, 10 GIgE,
InfiniBand, etc.)

s 100 Mb/s Ethernet or Gigabit Ethernet, has the drawback
of a high latency (= 50 — 100 S)

s Myri-10G, supports a 10 Gbit/s data rate, low latency

s InfiniBand, the serial connection’s signalling rate is 2.5
gigabit per second (Gbit/s) in each direction per
connection.

s Single, double, and quad data rates carry 2, 4, or 8
Gbit/s respectively.

s InfiniBand QDR with 12X Quad (QDR) is expected as
productions systems during 2008.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 11

Some HPC Systems - ENIAC

#® ENIAC, short for Electronic
Numerical Integrator And
Computer.

#® The first general purpose
programmable electronic
computer completed in 1945 at
the University of Pennsylvania.

Hydrogen bomb design.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 12

Some HPC Systems - CRAY

#® The Cray 1 was installed in 1976 (Los
— Alamos). The first “supercomputer”.

In 1993, Cray Research offered its
first massively parallel processing
(MPP) system, the Cray T3D
supercomputer.

In 2004, the Cray XD1 system de-
signed around a direct-connect pro-
cessor approach to massively parallel
processing that directly links together
processors, alleviating memory con-
tention and interconnect bottlenecks
found in cluster and SMP systems.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 13

Some HPC Systems-EarthSimulator

Japanese supercomputer simulates
Earth for global climate models to
evaluate the effects of global
warming and problems in solid earth
geophysics.. The fastest
supercomputer in the world from
2002 to 2004.

NEC SX architecture, 640 nodes,
each node with 8 vector processors
(8 Gflop/s peak per processor), 2 ns
cycle time, 16GB shared memory. 10
TB memory. 700 TB disk space. 1.6
PB mass store

#® Area of computer = 4 tennis courts, 3
floors.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 14

Some HPC Systems - Blue Gene/L

#® The Blue Gene/L machine was
designed to reach operating speeds
In the PFLOPS (petaFLOPS) range,

Built in collaboration with the
Department of Energy’s
NNSA/Lawrence Livermore National
Laboratory in California.

LLNL system has a peak speed of
596 Teraflops. Blue Gene systems
occupy the #1 and a total of 4 of the
top 10 positions in the TOP500
supercomputer list (Nov 2007).

Trading the speed of processors for
lower power consumption.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 15

top500.0rg

A list of the 500 most powerful computer systems over the
world.

Established in June 1993, compiled twice a year (June &
November).

Using LINPACK Benchmark code (solving linear algebra
equation aX=b).

Organized by world-wide HPC experts, computational
scientists, manufacturers, and the Internet community.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 16

Top500 List - November 2007 (

1-10)

Rank

10

Site

DoEMmIMS A LKL
United States

Forschungszentrum Juslich
[FZ.0)
SErmanty

SGMewr Mexico Computing
Applications Cernter (RMCLC]
Lnited States

Computational Research
Laboratories, TATAS SORS
Indi=

Sovernment Agency
Sweeden

MRS A Sandia Mational
Laboratories
United States

Drak Ridge RMational
Laboratory
United States

18k Thomas J. Wat=on
Reszearch Center
United States

MER=CABrL
United States

=tony Brookmarl, Mew Y ark
Center for Computational
Sciences

United States

Computer

BlueGenall - eServer
Blue Sene Solution
1B8m

JUSEME - Blue GenesP
Solution
1B

S5 Altix ICE G200, Heon
quad core 3.0 GHzE
=] |

EH.AL, - Cluster Platform
S000 BL4E0C, Xeon S353xx
SEH=z, Infiniband
Hewvlett-Packard

Zluster Plattform 3000
BLAEOC, Xeon S3xx
2.665Hz, Infiniband
Hewvlett-Packard

Red Storm - Sandial Cray
Fed Storm, Opteron 2.4
SHz dual caore

Cray Inc.

Jdaguar - Cray XT40-T3
Cray Inc.

B - eServer Blue Gene
Solution
1B

Franklin - Cray =T4, 2 6
SH=
Cray Inc.

Mewy “ork Blus - eServer
Blue Sene Solution
1B

Processors

212992

BES536

14336

14240

13725

2E569

23016

403960

19320

36564

Year

2007

2007

2007

2007

2007

2007

2006

2005

2007

2007

Rmax

47E200

167300

126300

117300

102300

102200

101700

91230

S5365

52161

Rpea k

S9E537S

222522

1720352

170530

146450

127551

113330

114555

100454

103219

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 17

Top500 - Performance Devel.

500
iMErnErilEsi

Performance Development

Performance

100FFaps
10 PFlops ! EBES.BET__F.
._.__.dr'
1 FFlops T T 47520 TFE
.'_.__I-‘.' -R-R-B-
100 TFlops = a
| - ,
-
‘_
10 TRlops 4 4% > =i 5829 GF
.{bﬁ __er" _._.,,I-' o il
.5.’. o B D
1 TRlops < .fl o
L% O
100 GA _év;l"""'r o S
ops .
D-E:
10 GFlops 4~ | g0
"?.-d: i
1 GFlops 4™ o
: EPH
100 MFops LAEes SR 1S | PR P PP 7 SO) B B e U7 A7 Ll s
PO T N T ST~ NN oo« = EH .y KO e P O 1 T o e
o m X m @ ; o] S e e =T
288 88 85 333838 8 8 3

08112007

http:/'www topb00.omg/

-a- #1
o- #5500
-3- Sum

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 18

Top500 - Detalls

© o o o o o o

Number of Processors
Operating System
Operating System Family
Inter Connection

Inter Connection Family
Processor Generation
Processor Family

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 19

Compilers

® FORTRAN 77/90/95

s Ifort/ifc - Intel Fortran Compilers

s g7/ (fr7)lgfortran -GNU project Fortran 77
compiler/Fortran 95 compiler

s pgf77/pgfo0 - Portland Group Fortran 77 compiler/Fortran
95 compiller

o f77/f90/f95 - Absoft ProFortran Compilers

s pghpf -Portland Group High Performance Fortran
Compiler

o C/C++

s Icc - Intel C/C++ Compilers

s gcc/g++(ct+) - GNU project C compiler/C++ compiler

» pgcc/pgCcC - Portland Group C compiler/C++ compiler

» ParatteHmpichtarmy——————————————————————

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 20

mnif77 mMmnifON mnice MmniCC

Profilers & Debuggers

© o o o o

Intel: idb, gprof

PGI: pgdebug, pgprof, gprof SMP machines
GNU: gdb, gprof

Absoft: fx, xfx, gprof

Debugging of parallel programs remain a challenging
research area. Debugging is easier for MPI paradigm than
shared memory paradigm (even if it is hard to believe)

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 21

Utilities & Libraries

® Mathematic Libraries
s IMSL, NAG, etc.

Scientific Computing

s Linear Algebra, BLAS, ATLAS, EISPACK,
LAPACK,SCALAPACK

s Fast Fourier Transform, FFTW
s The GNU Scientific Library, GSL
s Utility Libraries, netCDF, PETSc, etc.

Parallel Computing
s OpenMP, PVM, MPI (MPICH, LAM/MPI, MPICH-GM)

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 22

Quantum Chemistry

ABINIT yes(MPI) ADF PVM Cerius2 MPI GAMESS MPI
Gaussian OpenMP MacroModel - MOLFDIR - Molpro MPI

NWChem MPI MaterialStudio MPI CPMD MPI ACES?2 -
VASP ?

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 23

Molecular Dynamics

Amber MPIl) NAMD/VMD MPI Gromacs MPI Insightll -
MacroModel - PMEMD MPI Quanta MPI Sybyl - CHARMM
MPI TINKER - O -

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 24

Molecular & Scientific Visualization

® AVS AVS- Express Cerius2 DINO ECCE GaussView GRASP
Insightll - MOIL-VIEW MOLDEN MOLKEL MOLMOL
MOLSCRIPT MOLSTAR MOVIEMOL NBOview QUANTA

RASMOL RASTER3D SPARTAN SPACK SYBYL VMD
Xtal/View XMGR GRACE

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 25

Parallel Computing

Decomposition of a task into smaller tasks to be performed
simultaneously, I.e. in parallel

Parallelism is achieved by:
» Break up tasks into smaller tasks
» Assign smaller tasks to workers to work on simultaneously
s Co-ordinate the workers

o Parallel Processing: Concurrent use of multiple processors
to process data.

» Running the same program on many processors.

» Running different programs on the processor (not
preferred).

s Running many programs on each processor (not
preferred).

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 26

The Memory Problem

tinyg bandwidth == HUGE EOTTLEMECEK
laaa e T | T | T 3

188 CFU Speed
: DRANM Speesd

18 |

Ferformance

#.1
1975 19868 1985 1998 1995 2668 2ZHES 2818
VYear

#® Processor speed vs Memory speed
» Hierarchal memory
s Streaming data
s Out of order execution
s Compiler optimization

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 27

Memory Types |

M M i | M ‘
/ BUS

MEMORY

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 28

Memory Types Il - Distibuted (DM)

Distributed . Each CPU has its own associated memory.

s The CPUs are connected by some network and may
exchange data between their respective memories when
required.

s In contrast to shared memory machines the user must be
aware of the location of the data in the local memories.

» Must do message passing to exchange data between
processors explicitly when needed..

s The communication between processors is much slower
than in SM-MIMD systems.

» Moreover, the access to data that are not in the local
memory belonging to a particular processor have to be
obtained from non-local memory (or memories). This is

again on most systems very slow as compared to local
data access.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 29

Memory Types lll - Shared (SM)

Shared. Shared memory systems have multiple CPUs all of
which share the same address space.

s This means that the knowledge of where data is stored is
of no concern to the user as there is only one memory
accessed by all CPUs on an equal basis.

s Methods of memory access : Bus and Crossbar.

» The bandwidth problem that obsseses shared-memory
systems.

» The speed of the memory Is another critical issue.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 30

Memory Types IV - Hybrid

B35 B35

ENNEENENEEE BUS

MEMORY MEMORY MEMORY

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 31

Memory Types V - Programming

Multiple instruction, multiple data (MIMD) model of parallel
computers classified by their memory model. Shared
memory. Distributed memory. Hybrid (Shared and
Distributed memory)

The "message passing" model has becomes so much
accepted that PVM and MPI have been adopted by virtually
all major vendors of DM-MIMD systems and even on
SM-MIMD systems for compatibility reasons.

s PVM - standing for Parallel Virtual Machine
s MPI - standing for Message Passing Interface

#® For SM-MIMD systems, OpenMP should be mentioned that
can be used to parallelise Fortran and C(++) programs by
Inserting comment directives (Fortran 77/90/95) or pragmas
(C/C++) Into the code

and hacs hecome a well ectahliched efan d (T’pf')”r"msgﬁér"'@ﬁ

OpenMP

o o

An Application Program Interface (API) ; explicitly direct
multi-threaded, shared memory parallelism

s Compiler Directives

s Runtime Library Routines

s Environment Variables

Open specifications for Multi Processing via collaborative

work between interested parties from the hardware and
software industry, government and academia.

Portable & Standardized
The API is specified for C/C++ and Fortran

Multiple platforms have been implemented including most
Unix platforms and Windows NT

Jointly defined and endorsed by a group of major computer

hardware and software vendors

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 33

OpenMP - Example |

|n this simple example, the master thread forks a parallel
region.

All threads in the team obtain their unique thread number
and print it.

#® The master thread only prints the total number of threads.
Two OpenMP library routines are used to obtain the number
of threads and each thread’s number.

export PGI=/usr/local /pgi

export PATH=4PGI/1inuxB6/6.2/bin:$PATH

export MANPATH=fMANPATH:$PGI/1inuxB6/6.2/man

export LD_LIBRARY_PATH=/usr/local/pgi/linuxB6/6.2/1ib1f :
fusr/local /pgi/linuxB6/6. 2/1ib: $LD_LIERARY PATH

export OMP_NUM_THREADS=4 (This line is opticnal.)

pgcc ~mp -0 omp_helle omp_hello.c

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 34

OpenMP - Example Il

#include <omp.h>

#include <stdioc.h>

#include <stdlib.h>

int main (int arge, char #arpv[]) {

int nthreads, tid;

/* Fork a team of threads giving them their own copies of variables =*/
dpragma omp parallel private(nthreads, tid)

{
/* Obtain thread number #*/

tid = omp_get_thread num(};
printf{"Helle World from thread = Jd\n", tid);
f* Only master thread does this =*/
if (tid == 0)
{
nthreads = eomp_get num threads(};
printf("Number of threads = Jd\n", nthreads};
}
} /+ All threads join master thread and disband =*/
}

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 35

MPI |

o Parallelization scheme for distributed memory. Parallel
programs consist of cooperating processes, each with its
own memory. Standard (specification).

s MPI 1: Traditional message-passing
s MPI 2. Remote memory, parallel I/0O, and dynamic
processes

#® Processes send data to one another as messages. Message
can be passed around among compute processes

Many implementations (almost each vendor has one)

s MPICH and LAM/MPI from public domain most widely
used

s GLOBUS MPI for grid computing

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 36

MPI I

Usually the same program is run on multiple processors

#® The 6 basic calls in MPI are (in FORTRAN):
o MPIL_INIT(ierr)
s MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
s MPI_COMM_ SIZE(MPI_COMM_WORLD, numprocs, ierr

)
s MPI_Send(buffer, count,MPl INTEGER,destination,
tag,MPl_COMM_WORLD, ierr)

s MPI_Recv(buffer, count, MPI_INTEGER,source,tag,
MPl_COMM_WORLD, status,ierr)

s MPI_FINALIZE(ierr)

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 37

MPI - Example |

Program takes data from process zero and sends it to all of
the other processes by sending it in a ring.

That s, process | should receive the data and send it to
process i+1, until the last process is reached.

Assume that the data consists of a single integer. Process
zero reads the data from the user.

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 38

MPI - Example Il

#include <stdio.h>
#include "mpi.h"
int main{ arge, argv)

int argc;
char #+argy;
{

int rank, wvalue, size;

MPI_Status status;

MPI_Init(&arge, &argv };

MPI_Comm_rank{ MPI_COMM_WOHRLD, &rank);

MPI_Cemm_size({ MPI_COMM_WORLD, &size);

de {
if (rank == () {

scanf { "}4", Evalue };

MPI_Send{ &value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD);
1
alese {

MPI_Recw(&value, 1, MPI_INT, rank - 1, 0, MPI_COMM_WORLD,

Estatus);

if (rank < size - 1)
MPI_Send{ &value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WOELD) ;
}
printf({ "Process %d got Wd\n", rank, value };

} while (wvalue »>= 0);

MPI_Finalize(};

return 0;

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 39

What is A Grid?

® Web: Uniform access to documents

Grid: Flexible, high-performance access to resources and
services for distributed communities

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 40

References |

© o o o o 0 o

http://its.unc.edu/hpc/training/scientific/
ENIAC

CRAY

The Earth Simulator Center

Blue Gene /L

http://www.top500.0rg

Overview of Recent Supercomputers by Aad J. van der
Steen and Jack J. Dongarra.

nttp://www.beowulf.org
nttp://www.linuxhpc.org

nttp://www.supercluster.org/
Task Force on Cluster Computing

© o o o o

A. Geist, A. Bequelin, J. Dongarra™ R famchek e W Faimeye -

http://its.unc.edu/hpc/training/scientific/
http://www.seas.upenn.edu/~museum/index.html
http://www.cray.com
http://www.es.jamstec.go.jp/index.en.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/bluegene.index.html
http://www.top500.org
http://www.top500.org/resources/orsc
http://www.beowulf.org
http://www.linuxhpc.org
http://www.supercluster.org/
http://www.clustercomputing.org

References Il

°

© o o o o ©

W. Gropp, S. Huss-Ledermann, A. Lumsdaine, E. Lusk, B.
Nitzberg, W. Saphir, M. Snir, MPIl: The Complete Reference,
Vol. 2, The MPI Extensions, MIT Press, Boston, 1998.

OpenMP
Nttp://www-unix.mcs.anl.gov/mpi/index.htm
Nttp://www-unix.mcs.anl.gov/mpi/mpich/

nttp://www.lam-mpi.org/
Nttp:// www.mpi-forum.org

Nttp:// www-unix.mcs.anl.gov/mpi/tutorial/learning.htmi

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 42

http://www.openmp.org
http://www-unix.mcs.anl.gov/mpi/index.htm
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.lam-mpi.org/
http://www.mpi-forum.org
http://www-unix.mcs.anl.gov/mpi/tutorial/learning.html

References IlI

© o o ©

Intel Compilers
Gnu Compllers
Portland Compilers
Absoft Compllers

A brief survey of scientific/parallel computing/programming and parallel eigensolvers — p. 43

http://downloadcenter.intel.com
http://gcc.gnu.org
http://www-pgroup.com
http://www.absoft.com

	About Myself
	Aims of This Presentation
	Scientific Computing I
	Scientific Computing II - wikipedia
	Scientific Computing III - wikipedia
	Scientific Computing IV
	Supercomputing I
	Supercomputing II
	Supercomputing III
	Supercomputing IV
	Some HPC Systems - ENIAC
	Some HPC Systems - CRAY
	Some HPC Systems-EarthSimulator
	Some HPC Systems - Blue Gene/L
	top500.org
	Top500 List - November 2007 (1-10)
	Top500 - Performance Devel.
	Top500 - Details
	Compilers
	Profilers & Debuggers
	Utilities & Libraries
	Quantum Chemistry
	Molecular Dynamics
	Molecular & Scientific Visualization
	Parallel Computing
	The Memory Problem
	Memory Types I
	Memory Types II - Distibuted (DM)
	Memory Types III - Shared (SM)
	Memory Types IV - Hybrid
	Memory Types V - Programming
	OpenMP
	OpenMP - Example I
	OpenMP - Example II
	MPI I
	MPI II
	MPI - Example I
	MPI - Example II
	What is A Grid?
	References I
	References II
	References III

