Use of Orthogonal Polynomials

Example: The following data:
R/C: 0.73, 0.78, 0.81, 0.86, 0.875, 0.89, 0.95, 1.02, l.03, 1.055, 1.135, 1.14, 1.245, 1.32, 1.385, 1.43, 1.445, 1.535, 1.57, 1.63, 1.755;
$V_\theta /V_\infty $: 0.0788, 0.0788, 0.064, 0.0788, 0.0681, 0.0703, 0.0703, 0.0681, 0.0681, 0.079, 0.0575, 0.0681, 0.0575, 0.0511, 0.0575, 0.049, 0.0532, 0.0511, 0.049, 0.0532,0.0426:
Let $x = R/C$ and $y=V_\theta/V_\infty$, We would like our curve to be of the form

\begin{displaymath}
g(x)=\frac{A}{x}(1-e^{-\lambda x^2})
\end{displaymath}

and our least-squares equation becomes

\begin{displaymath}
S = \sum_{i=1}^{21}(Y_i-\frac{A}{x_i}(1-e^{-\lambda x_i^2}))^2
\end{displaymath}

Setting $S_\lambda=S_A=0$ gives the following equations:

\begin{displaymath}
\begin{array}{l}
\sum_{i=1}^{21}(\frac{1}{x_i})(1-e^{-\lamb...
...^2})(Y_i-\frac{A}{x_i}(1-e^{-\lambda x_i^2}))=0 \\
\end{array}\end{displaymath}

When this system of nonlinear equations is solved, we get

\begin{displaymath}
g(x)=\frac{0.07618}{x}(1-e^{-2.30574x^2})
\end{displaymath}

For these values of $A$ and $\lambda, S = 0.00016$. The graph of this function is presented in Figure 8.
Figure 8: The graph of $V_\theta /V_\infty $ vs $R/C$.
\includegraphics[scale=0.9]{figures/3.10.ps}

An algorithm for obtaining a least-squares polynomial:
\fbox{\parbox{11cm}{
Given $N$\ data pairs, $(x_i,Y_i), i= 1,\ldots,N$, obtain a...
...2 + \ldots+ a_nx^n$\\
which is the desired polynomial that fits the data.\\
}}
2004-12-06