Fourier Series for Periods Other Than $ 2\pi $

Figure 6.5: Left: Plot of $ f(x)=x$, periodic of period $ 2\pi $,Right: Plot of the Fourier series expansion for $ N=2,4,8$.
\includegraphics[scale=0.85]{figures/4.6.ps} \includegraphics[scale=0.85]{figures/4.7.ps}
Examples:
  1. Let $ f(x)=x$ be periodic between $ -\pi$ and $ \pi$. (See Figure 6.5left). Find the $ A$s and $ B$s of its Fourier expansion. For $ A_0$;

    $\displaystyle A_0=\frac{1}{\pi}\int_{-\pi}^{\pi} f(x)dx=\frac{1}{\pi}\int_{-\pi}^{\pi} xdx=\left[ \frac{x^2}{2\pi}\right] ^{\pi}_{-\pi}=0
$

    For the other $ A$s;

    $\displaystyle A_n=\frac{1}{\pi}\int_{-\pi}^{\pi} xcos(nx)dx=0
$

    For the other $ B$s;

    $\displaystyle B_n=\frac{1}{\pi}\int_{-\pi}^{\pi} xsin(nx)dx=\frac{2(-1)^{n+1}}{n}, n=1,2,3,\ldots
$

    We then have

    $\displaystyle x\approx 2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n} sin(nx), -\pi<x<\pi
$

    Figure 6.5right shows how the series approximates to the function when only two, four, or eight terms are used.
  2. Find the Fourier coefficients for $ f(x)= \vert x\vert$ on $ -\pi$ to $ \pi$;

    $\displaystyle A_0=\frac{1}{\pi}\int_{-\pi}^{0} -xdx+\frac{1}{\pi}\int_{0}^{\pi} xdx=\pi
$

    \begin{displaymath}
A_n=\frac{1}{\pi}\int_{-\pi}^{0} (-x)cos(nx)dx+\frac{1}{\pi}...
...c{-4}{(n^2\pi)}, & n=1,3,5,\ldots\\
\end{array}\right\rbrace
\end{displaymath}

    $\displaystyle B_n=\frac{1}{\pi}\int_{-\pi}^{0} (-x)sin(nx)dx+\frac{1}{\pi}\int_{0}^{\pi} (x)sin(nx)dx=0
$

    Because the definite integrals are nonzero only for odd values of $ n$, it simplifies to change the index of the summation. The Fourier series is then

    $\displaystyle \vert x\vert\approx\frac{\pi}{2}-\frac{4}{\pi}\sum_{n=1}^{\infty} \frac{cos(2n-1)x}{(2n-1)^2}
$

    Figure 6.6 shows how the series approximates the function when two, four, or eight terms are used.
    Figure 6.6: Plot of Fourier series for $ \vert x\vert$ for $ N=2,4,8$.
    \includegraphics[scale=1]{figures/4.8.ps}
  3. Find the Fourier coefficients for $ f(x) = x(2 - x)=2x - x^2$ over the interval [-2, 2] if it is periodic of period 4. Equations 6.10 and 6.11 apply.

    $\displaystyle A_0=\frac{2}{4}\int_{-2}^{2}(2x-x^2)dx=\frac{-8}{3}
$

    $\displaystyle A_n=\frac{2}{4}\int_{-2}^{2} (2x-x^2)cos\left( \frac{n\pi x}{2}\right) dx=\frac{16(-1)^{n+1}}{n^2\pi^2}, n=1,2,3,\ldots
$

    $\displaystyle B_n=\frac{2}{4}\int_{-2}^{2} (2x-x^2)sin\left( \frac{n\pi x}{2}\right) dx=\frac{8(-1)^{n+1}}{n\pi}, n=1,2,3,\ldots
$

    $\displaystyle x(2-x)\approx \frac{-4}{3}+\frac{16}{\pi^2}\sum_{n=1}^{\infty}\fr...
...{\pi}\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}sin\left( \frac{n\pi x}{2}\right)
$

    Figure 6.7 shows how the series approximates to the function when 40 terms are used.
    Figure 6.7: Plot of Fourier series for $ x(2-x)$ for $ N=40$.
    \includegraphics[scale=1]{figures/4.9.ps}
With MATLAB,

\includegraphics[scale=1.3]{figures/4-15}
Cem Ozdogan 2011-12-27